題目列表(包括答案和解析)
(本題12分)已知數列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
數列{bn}滿足bn=an+1-2an.
(Ⅰ)求證:數列{-}是等比數列;
(Ⅱ)求數列{}的通項公式;
(Ⅲ)求.
(本題12分)已知數列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
數列{bn}滿足bn=an+1-2an.
(Ⅰ)求證:數列{-}是等比數列;
(Ⅱ)求數列{}的通項公式;
(Ⅲ)求.
(本題滿分12分) 已知數列{an}的前項和為Sn,且滿足a1=1,2Sn=nan+1(1)求an; (2)設bn= ,求b1+b2+…+bn
(本題滿分12分)
已知各項均為正數的數列{an}滿足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中項,數列{bn}的前n項和Sn=n2
(1)求數列{an}與{bn}的通項公式;
(2)若Tn=,求證:Tn<
(3)若cn=-,T/n=c1+c2+…+cn,求使T/n+n2n+1>125成立的正整數n的最小值
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com