如圖.在直角坐標(biāo)系中.有一組對(duì)角線長(zhǎng)為的正方形.其對(duì)角線依次放置在軸上.設(shè)數(shù)列是首項(xiàng)為.公差為(的等差數(shù)列.點(diǎn)的坐標(biāo)為 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標(biāo)系中,有一組對(duì)角線長(zhǎng)為的正方形

其對(duì)角線依次放置在軸上(相鄰頂點(diǎn)重合).設(shè)是首項(xiàng)為,公差為的等差數(shù)列,點(diǎn)的坐標(biāo)為.

(1)當(dāng)時(shí),證明:頂點(diǎn)不在同一條直線上;

(2)在(1)的條件下,證明:所有頂點(diǎn)均落在拋物線上;

(3)為使所有頂點(diǎn)均落在拋物線上,求之間所應(yīng)滿足的關(guān)系式.

查看答案和解析>>

如圖,在直角坐標(biāo)系xOy中,有一組對(duì)角線長(zhǎng)為an的正方形AnBnCnDn(n=1,2,…),其對(duì)角線BnDn依次放置在x軸上(相鄰頂點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為d(d>0)的等差數(shù)列,點(diǎn)B1的坐標(biāo)為(d,0).
(1)當(dāng)a=8,d=4時(shí),證明:頂點(diǎn)A1、A2、A3不在同一條直線上;
(2)在(1)的條件下,證明:所有頂點(diǎn)An均落在拋物線y2=2x上;
(3)為使所有頂點(diǎn)An均落在拋物線y2=2px(p>0)上,求a與d之間所應(yīng)滿足的關(guān)系式.

查看答案和解析>>

(2009•上海)如圖,在直角坐標(biāo)系xOy中,有一組對(duì)角線長(zhǎng)為an的正方形AnBnCnDn(n=1,2,…),其對(duì)角線BnDn依次放置在x軸上(相鄰頂點(diǎn)重合).設(shè){an}是首項(xiàng)為a,公差為d(d>0)的等差數(shù)列,點(diǎn)B1的坐標(biāo)為(d,0).
(1)當(dāng)a=8,d=4時(shí),證明:頂點(diǎn)A1、A2、A3不在同一條直線上;
(2)在(1)的條件下,證明:所有頂點(diǎn)An均落在拋物線y2=2x上;
(3)為使所有頂點(diǎn)An均落在拋物線y2=2px(p>0)上,求a與d之間所應(yīng)滿足的關(guān)系式.

查看答案和解析>>

某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:

組別
頻數(shù)
頻率
145.5~149.5
8
0.16
149.5~153.5
6
0.12
153.5~157.5
14
0.28
157.5~161.5
10
0.20
161.5~165.5
8
0.16
165.5~169.5


合計(jì)


(1)求出表中字母所對(duì)應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫(huà)出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?

查看答案和解析>>

某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測(cè)量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別
頻數(shù)
頻率
145.5~149.5
8
0.16
149.5~153.5
6
0.12
153.5~157.5
14
0.28
157.5~161.5
10
0.20
161.5~165.5
8
0.16
165.5~169.5


合計(jì)


(1)求出表中字母所對(duì)應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫(huà)出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

A

A

A

A

B

B

B

C

C

A

11.  -3      12.    3       13.     14.

15.  4        (5,1,3) 

16.⑴

  

       =

由于  

當(dāng)時(shí)   

當(dāng)時(shí)     

此時(shí)  

綜上,取最大值時(shí),  

17.⑴

因?yàn)楹瘮?shù)的圖象在點(diǎn)處的切線與直線平行,所以,即。                      (文2分)

過(guò)點(diǎn),  (文4分,理3分)

⑵由⑴知,。

,則,

易知的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為。 

 (文6分,理5分)。

當(dāng)時(shí),的最大值為,最小值為;

當(dāng)時(shí),的最大值為,最小值為;  (文10分,理7分)

當(dāng)時(shí),的最大值為,最小值為; (文12分,理8分)

⑶因?yàn)?sub>為連續(xù)函數(shù),所以=

由⑵得,則

,(理10分)

,

。     (理12分)

18.⑴,且平面平面,

平面

平面,,

為二面角的平面角。   (4分)

J是等邊三角形,,即二面角的大小為。   (5分)

⑵(理)設(shè)的中點(diǎn)為,的中點(diǎn)為,連結(jié)、、,

,,①

,且平面平面,

平面。     (7分)

平面,

。            ②

由①、②知

,,得四邊形為平行四邊形,

,

平面,又平面,

平面平面。   

19.⑴三人恰好買(mǎi)到同一只股票的概率。  (文4分,理3分)

⑵解法一  三人中恰好有兩個(gè)買(mǎi)到同一只股票的概率。    (文9分,理7分)

由⑴知,三人恰好買(mǎi)到同一只股票的概率為,所以三人中至少有兩人買(mǎi)到同一只股票的概率。  (文12分,理9分)

解法二  。  (文12分,理9分)

⑶(只理科做)每股今天獲利錢(qián)數(shù)的分布列為:

2

0

-1

0.5

0.2

0.3

所以,1000股在今日交易中獲利錢(qián)數(shù)的數(shù)學(xué)期望為

1000   (理12分)

20.⑴由題意可知,,,

,    (3分)

頂點(diǎn)、、不在同一條直線上。      (4分)

⑵由題意可知,頂點(diǎn)橫、縱坐標(biāo)分別是。

消去,可得。     (12分)

為使得所有頂點(diǎn)均落在拋物線上,則有解之,得    (14分)

、所以應(yīng)滿足的關(guān)系式是:。      (16分)

解法二    點(diǎn)的坐標(biāo)滿足

 點(diǎn)在拋物線上,

   

又點(diǎn)的坐標(biāo)滿足且點(diǎn)也在拋物線上,

把點(diǎn)代入拋物線方程,解得。(13分)

因此,,拋物線方程為。

所有頂點(diǎn)均落在拋物線

、所應(yīng)滿足的關(guān)系式是:。

21.⑴,

由題意,得,    (2分)

⑵由⑴,得


同步練習(xí)冊(cè)答案