8.從集合中任取三個(gè)數(shù)排成一列.則這三個(gè)數(shù)成等差數(shù)列的概率是( ) 查看更多

 

題目列表(包括答案和解析)

從集合中任取兩個(gè)不同的數(shù),則其中一個(gè)數(shù)恰是另一個(gè)數(shù)的3倍的概率為       

 

查看答案和解析>>

從集合中任取兩個(gè)不同的數(shù),則其中一個(gè)數(shù)恰是另一個(gè)數(shù)的3倍的概率為     

 

查看答案和解析>>

從集合中任取三個(gè)不同的元素作為直線的值,若直線傾斜角小于,且軸上的截距小于,那么不同的直線條數(shù)有

A、109條       B、110條     C、111條     D、120條

 

 

查看答案和解析>>

從集合中任取三個(gè)元素構(gòu)成三元有序數(shù)組,規(guī)定

(1)從所有三元有序數(shù)組中任選一個(gè),求它的所有元素之和等于10的概率;

(2)定義三元有序數(shù)組的“項(xiàng)標(biāo)距離”為,(其中,從所有三元有序數(shù)組中任選一個(gè),求它的“項(xiàng)標(biāo)距離”為偶數(shù)的概率;

 

查看答案和解析>>

從集合中任取5個(gè)數(shù)組成集合A,則A中任意兩個(gè)元素之和不等于11的概率為(    )

A.                  B.

C.                D.

 

查看答案和解析>>

1.B  2.D  3.A  4.B  5.C  6.D  7.A  8.B  9.C  10.C

11.2   12.   13.0  14.  15.96

16.解:(1)依題意:,即,又,

∴  ,∴  ,

(2)由三角形是銳角三角形可得,即。

     由正弦定理得∴  ,

∴ 

  ∵   ,∴  ,

∴      即。

17.設(shè),則=,,

,又,

.

(2)=,

18解:(1)記數(shù)列的前項(xiàng)和為,則依題有

,故

故數(shù)列的通項(xiàng)為.故,易知,

(2)假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立,則對(duì)任意都成立,,,

,有.故存在最大的實(shí)數(shù)符合題意.

19. 20. 解:設(shè)該學(xué)生選修甲、乙、丙的概率分別為x、y、z

       依題意得                      

       (1)若函數(shù)R上的偶函數(shù),則=0       

       當(dāng)=0時(shí),表示該學(xué)生選修三門功課或三門功課都沒選.

      

       =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24

       ∴事件A的概率為0.24                                                      

   (2)依題意知的的取值為0和2由(1)所求可知

P(=0)=0.24 P(=2)=1- P(=0)=0.76

的分布列為

0

2

P

0.24

0.76

的數(shù)學(xué)期望為E=0×0.24+2×0.76=1.52                       

20. (1)由題意可知,又,解得,

橢圓的方程為

(2)由(1)得,所以.假設(shè)存在滿足題意的直線,設(shè)的方程為

,代入,得,

設(shè),則   ①

,

的方向向量為,

; 當(dāng)時(shí),,即存在這樣的直線;

當(dāng)時(shí),不存在,即不存在這樣的直線 .

21.(1) 必要性 : ,又  ,即

充分性 :設(shè) ,對(duì)用數(shù)學(xué)歸納法證明

        當(dāng)時(shí),.假設(shè)

        則,且

,由數(shù)學(xué)歸納法知對(duì)所有成立

     (2) 設(shè) ,當(dāng)時(shí),,結(jié)論成立

         當(dāng) 時(shí),

          ,由(1)知,所以  且   

         

         

         

(3) 設(shè) ,當(dāng)時(shí),,結(jié)論成立

 當(dāng)時(shí),由(2)知

  w.w.w.k.s.5.u.c.o.m    


同步練習(xí)冊(cè)答案