20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)已知函數(shù).(Ⅰ)當時,求證:函數(shù)上單調遞增;(Ⅱ)若函數(shù)有三個零點,求的值;

(Ⅲ)若存在,使得,試求的取值范圍.

查看答案和解析>>

(本小題滿分16分) 設為實數(shù),函數(shù). (1)若,求的取值范圍; (2)求的最小值; (3)設函數(shù),求不等式的解集.

查看答案和解析>>

(本小題滿分16分)

按照某學者的理論,假設一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現(xiàn)假設甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)求關于、的表達式;當時,求證:=;

(2)設,當、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問能否適當選取、的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長4的⊙的方程;

(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分16分)已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;

(Ⅱ)求以點為圓心,且被直線截得的弦長為   4的⊙的方程;

(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

 1.     2.必要補充分    3.     4.   5. 38    6.①④      7.      8.16 

9.     10 ②   11.-3   12.  13. 13    14.

15 解:(1)將

 

(2)由(1)及

 

16.證明;(1)

 

(2)存在點N為線段AB上靠近點A的四等分點         

 

17.解:(1)∵面C的圓心在第二象限,且與直線y=x相切與坐標原點O,

故可設圓心為(-m,m)(m>0)

∴圓C的半徑為

令x=0,得 y=0,或y=2m

∵圓C在y軸上截得的弦長為4.

(2)由條件可知

又O,Q在圓C上,所以O,Q關于直線CF 對稱;

直線CF的方程為

故Q點坐標為

 

18.解:設公司裁員人數(shù)為x,獲得的經(jīng)濟效益為y元,

則由題意得當

  ①

 

  ②

 

 由①得對稱軸

由②得對稱軸

即當公司應裁員數(shù)為,即原有人數(shù)的時,獲得的經(jīng)濟效益最大。

 

19.解:(1)

一般地,

-=2

即數(shù)列{}是以,公差為2的等差數(shù)列。

即數(shù)列{}是首項為,公比為的等比數(shù)列

 

(2)

(3)

注意到對任意自然數(shù)

要對任意自然數(shù)及正數(shù),都有

此時,對任意自然數(shù)

20解:(1­)

方程無解

 

 

②   

 

 

 

 

   

由②

同上可得方程上至少有一解。

綜上得所求的取值范圍為

 

∴所證結論成立

單調遞增

單調遞增

所證結論成立

 

 

2009屆江蘇省百校高三樣本分析考試

數(shù)學附加題參考答案

 1.(A)解:(1)取BD的中點O,連結OE,則 OE為△BDE的外接圓半徑,

∵BE平分∠ABC,∴∠CBE=∠OBE,又    ∵OB=OE,∴∠OBE=∠BEO

∴∠CBE=∠BEO,∴BC∥OE. …………………………………3分

∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線……5分

(2)設⊙O的半徑為r,則在△AOE中,

OA2=OE2+AE2,即,……7分

∴AO=2OB , 由(1)得OE∥BC,

,

∴EC=3    ………………………………………………………………………………10分

 

 

 

1.(B)解:(1)設A的一個特征值為,由題意知:

 ……………………3分

 …5分

(2)  ………………………………………7分

……10分

1.(C)解:由題設知,圓心  ………………………………………………2分

∠CPO=60°,故過P點的切線飛傾斜角為30°    ……………………………………4分

,是過P點的圓C的切線上的任一點,則在△PMO中,

∠MOP=

由正弦定理得 ……………7分

,即為所求切線的極坐標方程!10分

1.(D)解:由柯西不等式

當且僅當 時取等號 …………………………………………8分

  …………………………………………………………10分

2.解:以O為原點,分別以OBOC OA為x軸、y軸、z軸,建立空間直角坐標O-xyz

(如圖),則A(0,0,2), B(2,0,0), C(0,2,0), E(0.1.0)…………2分

 

……………………………4分

 

 

∵異面直線BE與AC所成的角是銳角

故其余弦值是  …………………………………………………………………………5分

(2)

   ………………………………………………………………7分

而平面AEC的一個法向量為

 ………………………………………………9分

由于二面角A-BE-C為鈍角,故其余弦值是   ……………………………………10分

3.解:(1)分別記甲、乙、丙三個同學復檢合格為事件A1、A2、A3,E表示事件“恰有一人通過筆試。

                                   ……………………………………………………5分

(2)(法一)因為甲、乙、丙三個同學通過三關的概率均為     ……………………7分

所X~B(3,0,3)      ……………………………………………………………………8分

         ……………………………………………………10分

(法二)分別記甲、乙、丙三個同學經(jīng)過兩次考試后合格為事件A、B、C,

………………………………………………………………7分

   ……………………………………………8分

   …………………………9分

于是,     …………………………10分

 


同步練習冊答案