且.若雙曲線以A.B為焦點.且過C.D兩點.則當梯形的周長最大時.雙曲線的離心率為 . 查看更多

 

題目列表(包括答案和解析)

設雙曲線C:(a>0,b>0)的右焦點為F,左、右頂點分別為A1、A2.過F且與雙曲線C的一條漸近線平行的直線l與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線C的離心率為    (    )

A.           B. 2          C.           D.  3

 

查看答案和解析>>

設雙曲線C:(a>0,b>0)的右焦點為F,左、右頂點分別為A1、A2.過F且與雙曲線C的一條漸近線平行的直線l與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線C的離心率為

[  ]
A.

B.

2

C.

D.

3

查看答案和解析>>

設雙曲線的中心在原點,焦點在x軸上,實軸長為2,它的兩條漸近線與以A(0,1)為圓心、為半徑的圓相切.直線l過點A且與雙曲線的左支交于B、C兩點.

(Ⅰ)求雙曲線的方程.(Ⅱ)若求直線l的方程;

查看答案和解析>>

已知雙曲線W:
x2
a2
-
y2
b2
=′1 (a>0,b>0)
的左、右焦點分別為F1、F2,點N(0,b),右頂點是M,且
MN
MF2
=-1
,∠NMF2=120°.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點Q(0,-2)的直線l交雙曲線W的右支于A、B兩個不同的點(B在A、Q之間),若點H(7,0)在以線段AB為直徑的圓的外部,試求△AQH與△BQH面積之比λ的取值范圍.

查看答案和解析>>

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準線與漸近線y=
3
3
x及x軸圍成的三角形的周長是
3
2
(1+
3
)
.以C1的兩個頂點為焦點,以C1的焦點為頂點的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經過定點P(m,0)(m>0)并與橢圓C2交于不同的兩點A、B,若對于橢圓C2上任意一點M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實數m的值.

查看答案和解析>>

一、選擇題:(本大題10個小題,每小題5分,共50分)

1--5  BDDCA     6--10  ACBCB

二.填空題:(本大題共6小題,每小題4分,共24分)

;         12.;        13. ;        14. ;

                ;

三、解答題:(本大題共6小題,共76分).

17.(13分)

解:(I)

              ………………………(6分)

函數的單調減區(qū)間為……………………(7分)

(II)……………(11分)

函數的最大值為,最小值為.…………………………(13分)

18.(13分)

解:(I)

時,

將①-②得…………………(4分)

        在①中,令

………………………………………………(6分)

(II)由則當時,………(8分)

時, ……………………(9分)

……………(12分)

…………………………………………(13分)

19.(13分)

解:(I)由題意有,得,故

(II)由(I)知:

……(11分)

當且僅當時,有最大值.

答: 2009年的年促銷費用投入2.5萬元時,該廠家利潤最大. …………(13分)

20.(13分)

解:(I)時,,即(※)

(1)當時,由(※)

,………………………………………………(2分)

(2)當時,由(※)

,………………………………………(4分)

(3)當時,由(※)

,………………………………………………(6分)

綜上:由(1)、(2)、(3)知原不等式的解集為……………(7分)

(II)當時,,即恒成立,

也即上恒成立!(10分)

上為增函數,故

當且僅當時,等號成立.

………………………………………………… (13分)

21.(12分)

解:(I)在中,由余弦定理得(1分)

………(4分)

,即動點的軌跡為以A、B為兩焦點的橢圓.

動點的軌跡的方程為:.………………………… (6分)

(II)由.(※)… (7分)

,易知,則

②…………………………………………………(8分)

③…………………………………………… (10分)

將③代入①、②得消去

,代入(※)方程 .故…………… (12分)

 

22.(12分)

解:(I)由

………………………………(2分)

(II)由

…………(4分)

從而

…………………………………………………(6分)

(III )由

,則

于是…………………………………(8分)

……………(10分)

從而

同步練習冊答案