(II)求函數(shù)在區(qū)間上的值域. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,;

時,

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

(II)當時,不等式恒成立,求實數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域為,則

,

時,;當時,

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當時,函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則,

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當時,恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

 

查看答案和解析>>

(本題滿分12分)已知函數(shù),

(I)求函數(shù)的遞增區(qū)間;

(II)求函數(shù)在區(qū)間上的值域。

 

查看答案和解析>>

(本題滿分12分)已知函數(shù),
(I)求函數(shù)的遞增區(qū)間;
(II)求函數(shù)在區(qū)間上的值域。

查看答案和解析>>

 

已知函數(shù)

   (I)求函數(shù) 的最小正周期和圖象的對稱軸方程;

   (II)求函數(shù)在區(qū)間上的值域。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長度是為,為半個周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域為!14分

19.解:(1)該同學(xué)投中于球但未通過考核,即投藍四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學(xué)通過考核的概率為

      ………………10分

    隨機變量X服從其數(shù)學(xué)期望

  …………14分

20.解:(1)設(shè)FD的中點為G,則TG//BD,而BD//CE,

    當a=5時,AF=5,BD=1,得TG=3。

    又CE=3,TG=CE。

    *四邊形TGEC是平行四邊形。      

*CT//EG,TC//平面DEF,………………4分

   (2)以T為原點,以射線TB,TC,TG分別為x,y,z軸,

建立空間直角坐標系,則D(1,0,1),

              ………………6分

  •     則平面DEF的法向量n=(x,y,z)滿足:

    <label id="vt4cf"><progress id="vt4cf"></progress></label>
      <pre id="vt4cf"><dfn id="vt4cf"><td id="vt4cf"></td></dfn></pre>

       

          解之可得又平面ABC的法向量

      m=(0,0,1)

         

         即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

         (3)由P在DE上,可設(shè),……10分

          則

                         ………………11分

          若CP⊥平面DEF,則

          即

       

       

          解之得:                ……………………13分

          即當a=2時,在DE上存在點P,滿足DP=3PE,使CP⊥平面DEF!14分

      21.解:(1)因為        所以

          橢圓方程為:                          ………………4分

         (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

         

          代入       ………………6分

          設(shè)   ①

                        ……………………8分

          設(shè)AB的中點為M,則

         

           ……………………11分

          ,即存在這樣的直線l

          當時, k不存在,即不存在這樣的直線l;……………………14分

       

       

       

       

      22.解:(I) ……………………2分

          令(舍去)

          單調(diào)遞增;

          當單調(diào)遞減。    ……………………4分

          為函數(shù)在[0,1]上的極大值。        ……………………5分

         (II)由

       ①        ………………………7分

      設(shè),

      依題意知上恒成立。

      都在上單調(diào)遞增,要使不等式①成立,

      當且僅當…………………………11分

         (III)由

      ,則

      上遞增;

      上遞減;

              …………………………16分

       

       


      同步練習(xí)冊答案