題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)在軸上,點(diǎn)在軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在軸上移動時,求動點(diǎn)的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實(shí)根,求實(shí)數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題:(本題每小題5分,共50分)
1
2
3
4
5
6
7
8
9
10
D
B
C
D
D
C
B
A
A
C
二、填空題:(本題每小題4分,共16分)
11. 12. 13. 14.
三、解答題(本大題6小題,共84分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
15.(本小題滿分14分)
解得…………………4分
又
∵+1> 得B={y|y<或y>+1}……………………8分
∵A∩B=φ
∴ 1
+19…………………12分
∴-2…………………14分
16.(本小題滿分14分)
解:(1),
由得 又 ………6分
(2)因
………8分
又,,則
即…………………10分
…14分
17.(本小題滿分14分)
解: (…………………3分)
=(…………………7分)
又,,
(1)若,即時,==,(…………10分)
(2)若,即時,
所以當(dāng)即時,=(…………………13分)
(…………………14分)
18.(本小題滿分14分)
解:(1)令,,即
由
∵,∴,即數(shù)列是以為首項、為公差的等差數(shù)列, ∴ …………8分
(2)化簡得,即
∵,又∵時,…………12分
∴各項中最大項的值為…………14分
19.(本小題滿分14分)
解:(1),由題意―――①
又―――②
聯(lián)立得 …………5分
(2)依題意得 即 ,對恒成立,設(shè),則
解得
當(dāng) ……10分
則
又,所以;故只須 …………12分
解得
即的取值范圍是 …………14分
20.(本小題滿分14分)
解:(1)由,
即函數(shù)的圖象交于不同的兩點(diǎn)A,B; ……4分(2)
已知函數(shù),的對稱軸為,
故在[2,3]上為增函數(shù), ……………6分
……8分
(3)設(shè)方程
……10分
……12分
設(shè)的對稱軸為上是減函數(shù), ……14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com