(2)若函數(shù)上的最小值為2.最大值為3.求值, 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)=
x3+sinx
x4+cosx+2
在(-∞,+∞)上的最大值與最小值分別為M與N,則有(  )
A、M+N=0
B、M-N=0
C、MN=0
D、
M
N
=0

查看答案和解析>>

若函數(shù)f(x)=
2sin(x+
π
6
)+x4+x
x4+cosx
+1
[-
π
2
,
π
2
]
上的最大值與最小值分別為M與N,則有( 。
A、M-N=2
B、M+N=2
C、M-N=4
D、M+N=4

查看答案和解析>>

若函數(shù)f(x)=ax(a>0,且a≠1)在[-1,2]上的最大值為4,最小值m,且函數(shù)g(x)=(1-4m)
x
在[0,∞)上是增函數(shù),則a=( 。

查看答案和解析>>

若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)
x
在[0,+∞)上是增函數(shù),則a=( 。

查看答案和解析>>

若函數(shù)f(x)=logax(a>0,a≠1)在區(qū)間[
1
4
, 2]
上的最大值為1,最小值為m,且函數(shù)g(x)=(m+1)x2在區(qū)間[0,+∞)上是增函數(shù),則a=
1
4
1
4

查看答案和解析>>

一、選擇題:(本題每小題5分,共50分)

1

2

3

4

5

6

7

8

9

10

D

B

C

D

D

C

B

A

A

C

 

二、填空題:(本題每小題4分,共16分)

11.      12.     13.    14.

三、解答題(本大題6小題,共84分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

15.(本小題滿分14分)

…………………4分

    又

+1>    得B={y|y<或y>+1}……………………8分

∵A∩B=φ

∴  1

+19…………………12分

-2…………………14分

16.(本小題滿分14分)

解:(1)

    又    ………6分

(2)因 

 ………8分

,,則

…………………10分

…14分

 

 

17.(本小題滿分14分)

解:                            (…………………3分)

=(…………………7分)

,

(1)若,即時(shí),==,(…………10分)

(2)若,即時(shí),

所以當(dāng)時(shí),=(…………………13分)

(…………………14分)

18.(本小題滿分14分)

解:(1)令,,即

 由

  ∵,∴,即數(shù)列是以為首項(xiàng)、為公差的等差數(shù)列, ∴  …………8分

(2)化簡(jiǎn)得,即

 ∵,又∵時(shí),…………12分

 ∴各項(xiàng)中最大項(xiàng)的值為…………14分

19.(本小題滿分14分)

解:(1),由題意―――①

       又―――②

       聯(lián)立得                       …………5分

(2)依題意得   即 ,對(duì)恒成立,設(shè),則

      解

      當(dāng)   ……10分

      則

      又,所以;故只須   …………12分

      解得

      即的取值范圍是       …………14分

20.(本小題滿分14分)

解:(1)由

    即函數(shù)的圖象交于不同的兩點(diǎn)A,B;                                               ……4分(2)

已知函數(shù),的對(duì)稱軸為,

在[2,3]上為增函數(shù),                          ……………6分

                      ……8分

(3)設(shè)方程

                                 ……10分

                                ……12分

設(shè)的對(duì)稱軸為上是減函數(shù),      ……14分

 


同步練習(xí)冊(cè)答案