已知是等比數(shù)列.且..那么= , 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列{an}首項(xiàng)為a,公差為b,等比數(shù)列{bn}首項(xiàng)為b,公比為a,其中a,b 都是大于1的正整數(shù),且a1<b1,b2<a3,那么a=
2
2
;若對(duì)于任意的n∈N*,總存在m∈N*,使得   bn=am+3成立,則an=
5n-3
5n-3

查看答案和解析>>

已知等差數(shù)列{an}首項(xiàng)為a,公差為b,等比數(shù)列{bn}首項(xiàng)為b,公比為a,其中a,b都是大于1的正整數(shù),且a1<b1,b2<a3,那么a=(    );若對(duì)于任意的n∈N*,總存在m∈N*,使得bn=am+3成立,則an=(    )。

查看答案和解析>>

類比等差數(shù)列的定義給出“等和數(shù)列”的定義:________;已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a18的值為_(kāi)_______.這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為_(kāi)_______.

查看答案和解析>>

類比等差數(shù)列的定義給出“等和數(shù)列”的定義:    ;已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a18的值為    .這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為   

查看答案和解析>>

如果以數(shù)列的任意連續(xù)三項(xiàng)作邊長(zhǎng),都能構(gòu)成一個(gè)三角形,那么稱這樣的數(shù)列為“三角形”數(shù)列;又對(duì)于“三角形”數(shù)列,如果函數(shù)y=f(x)使得由=f()()確定的數(shù)列仍成為一個(gè)“三角形”數(shù)列,就稱y=f(x) 是數(shù)列的“保三角形”函數(shù)。

(Ⅰ)、已知數(shù)列是首項(xiàng)為2012,公比為的等比數(shù)列,求證:是“三角形”數(shù)列;

(Ⅱ)、已知數(shù)列是首項(xiàng)為2,公差為1的等差數(shù)列,若函數(shù)f(x)=  (m>0且m≠1)是的“保三角形”函數(shù). 求m的取值范圍.

 

查看答案和解析>>

1、A   2、C   3、B   4、D    5、A    6、D    7、C    8、B    9、A    10、D

11、            12、 

13、或等        14、

15、(1),   ----- (′)

(2)當(dāng)時(shí),,當(dāng)時(shí),,

由已知得,---------------------------------------------()

故當(dāng)即時(shí),----()

 

16、中:有兩個(gè)不等的負(fù)根,,得,----()

中:無(wú)實(shí)根,得---()

命題與命題有且只有一個(gè)為真,

若真假,則,----------()

若假真,則,---------()

綜上得-----------()

 

17、(1),由題意知,即, ∴,

得,

令得 ,或 (舍去)

當(dāng)時(shí),; 當(dāng)時(shí), ;

  當(dāng)時(shí),有極小值,又 

∴ 在上的最小值是,最大值是。----------()

(2)若在上是增函數(shù),則對(duì)恒成立,

   ∴ ,   (當(dāng)時(shí),取最小值)。

  ∴ ---------------------------------()

  

18、(1)由題意可設(shè),則,,

,點(diǎn)在函數(shù)的圖像上,

,當(dāng)時(shí),,時(shí),,

    。-------------------------------------------------------------()

   (2),

     

 

由對(duì)所有都成立得,,故最小的正整數(shù)。--()

 

19、(1)令得,令,得,

,為奇函數(shù),

又,,在上是單調(diào)函數(shù),故由 知在上是單調(diào)遞增函數(shù)。------------------------------------------------------------------------------------()

(2)不等式即,由(1)知:,,即,

得-------------------------------------------------

  (3)若對(duì)恒成立,

即對(duì)恒成立,

  即對(duì)恒成立,

 由在上是單調(diào)遞增函數(shù)得

即對(duì)恒成立,

    ,得----------------------()

 

20、(1)數(shù)列是公比為的等比數(shù)列,且,

      ,數(shù)列隔項(xiàng)成等比, 

      -------------------------------------------------------------()

   (2),當(dāng)時(shí),

          ,

   當(dāng) 時(shí),,當(dāng)時(shí),

  。

 

 

 

 


同步練習(xí)冊(cè)答案