題目列表(包括答案和解析)
直線過點
且傾斜角為
,直線
過點
且與直線
垂直,則直線
與直線
的交點坐標為____.
如圖,已知直線(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求與
的值;
(Ⅱ)設是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
【解析】第一問中利用圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
第二問中,由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為
是定點,所以點
在定直線
第三問中,設直線,代入
得
結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即,解得
(
舍去). …………………(2分)
設與拋物線的相切點為
,又
,得
,
.
代入直線方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為
,焦點
. ………………(2分)
設,由(Ⅰ)知以
為切點的切線
的方程為
.
令,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
若函數(shù)在點
處的切線為
,則直線
與
軸的交點坐標為_________.
設曲線在點
處的切線與
軸的交點橫坐標為
,則
的值為( )
A.
B.
C. D.
設曲線在點
處的切線與
軸的交點橫坐標為
,則
…
的值為
A.
B.
C.
D.1
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com