3.已知函數(shù)的導(dǎo)函數(shù).命題處取得極值.則的 A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3處取得極值.

(1)求f(x)的解析式;

(2)求f(x)在點(diǎn)A(1,16)處的切線(xiàn)方程.

查看答案和解析>>

有如下列命題:①三邊是連續(xù)的三個(gè)自然數(shù),且最大角是最小角的2倍的三角形存在且唯一;②若,則存在正實(shí)數(shù),使得;③若函數(shù)在點(diǎn)處取得極值,則實(shí)數(shù);④函數(shù)有且只有一個(gè)零點(diǎn).其中正確命題的序號(hào)是          

 

查看答案和解析>>

設(shè)函數(shù)R.若處取得極值,則常數(shù)a的值為          .

 

查看答案和解析>>

已知y=asinx+
1
3
sin3x
x=
π
3
處有極值,則( 。

查看答案和解析>>

3、已知函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),y=f′(x)是y=f(x)的導(dǎo)函數(shù),命題p:f′(x0)=0;命題q:y=f(x)在x=x0處取得極值,則p是q的( 。

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個(gè)小題,每小題5分,共20分。將符合題意的答案填在題后的橫線(xiàn)上)

13.2   14.70  15.  16.

三、解答題:本大題共6個(gè)小題,共70分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設(shè)通曉英語(yǔ)的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人!4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說(shuō)明:其他解法請(qǐng)酌情給分。

<code id="80moi"><del id="80moi"></del></code>

       (I),

           AD為PD在平面ABC內(nèi)的射影。

           又點(diǎn)E、F分別為AB、AC的中點(diǎn),

          

           在中,由于AB=AC,故

           ,平面PAD……4分

       (II)設(shè)EF與AD相交于點(diǎn)G,連接PG。

           平面PAD,dm PAD,交線(xiàn)為PG,

           過(guò)A做AO平面PEF,則O在PG上,

           所以線(xiàn)段AO的長(zhǎng)為點(diǎn)A到平面PEF的距離

           在

          

           即點(diǎn)A到平面PEF的距離為…………8分

           說(shuō) 明:該問(wèn)還可以用等體積轉(zhuǎn)化法求解,請(qǐng)根據(jù)解答給分。

       (III)

           平面PAC。

           過(guò)A做,垂足為H,連接EH。

           則

           所以為二面角E―PF―A的一個(gè)平面角。

           在

          

           即二面角E―PF―A的正切值為

           …………12分

           解法二:

          

    AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標(biāo)系,

           則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

  • <dl id="80moi"><small id="80moi"></small></dl>

           且

          

          

           平面PAD

       (II)為平面PEF的一個(gè)法向量,

           則

           令…………6分

           故點(diǎn)A到平面PEF的距離為:

          

           所以點(diǎn)A到平面PEF的距離為…………8分

       (III)依題意為平面PAF的一個(gè)法向量,

           設(shè)二面角E―PF―A的大小為(由圖知為銳角)

           則,…………10分

           即二面角E―PF―A的大小…………12分

    20.解:(I)依題意有:  ①

           所以當(dāng)  ②……2分

           ①-②得:化簡(jiǎn)得:

          

          

          

           所以數(shù)列是以2為公差的等差數(shù)列!4分

           故…………5分

           設(shè)

           是公比為64的等比數(shù)列

          

           …………8分

       (II)……9分

           …………10分

           …………11分

           …………12分

    21.解:(I)設(shè),則依題意有:

          

           故曲線(xiàn)C的方程為…………4分

           注:若直接用

           得出,給2分。

       (II)設(shè),其坐標(biāo)滿(mǎn)足

          

           消去…………※

           故…………5分

          

           而

          

           化簡(jiǎn)整理得…………7分

           解得:時(shí)方程※的△>0

          

       (III)

          

          

          

           因?yàn)锳在第一象限,故

           由

           故

           即在題設(shè)條件下,恒有…………12分

    22.解:(I)…………3分

           處的切線(xiàn)互相平行

           …………5分

          

           …………6分

       (II)

          

           令

          

          

           當(dāng)

           是單調(diào)增函數(shù)!9分

          

          

          

           恒成立,

           …………10分

           值滿(mǎn)足下列不等式組

            ①,或

           不等式組①的解集為空集,解不等式組②得

           綜上所述,滿(mǎn)足條件的…………12分

     

     

     

     


    同步練習(xí)冊(cè)答案