如圖 所示.⊙O的內(nèi)接ΔABC中.AB=AC,D是BC邊上的一點直線AD交⊙O于E. (1)求證:AB2=AD?AE;(2)當點D在BC的延長線上時.(1)的結(jié)論還成立嗎?若成立.給出證明,若不成立. 查看更多

 

題目列表(包括答案和解析)

(本題滿分6分)如圖所示的方格地面上,標有編號1、2、3的3

個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飛行的小鳥,將隨意地落在圖中所示的方格地面上,求
小鳥落在草坪上的概率;
(2)現(xiàn)準備從圖中所示的3個小方格空地中任意選取2個種植草坪,
則編號為1、2的2個小方格空地種植草坪的概率是多少(用樹狀圖或列表法求解)?

查看答案和解析>>

(本題滿分7分)

如圖所示,在中,分別是上的一點,交于點,給出下列四個條件:①;②;③;④

1.(1)上述四個條件中,哪兩個條件可以判定是等腰三角形(用序號寫出所有的情形);

2.(2)選擇(1)小題中的一種情形,證明是等腰三角形.

 

查看答案和解析>>

 (本題滿分10分)

如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.

1.(1)當a=-1 , b=1時,求拋物線n的解析式;

2.(2)四邊形AC1A1C是什么特殊四邊形,請寫出結(jié)果并說明理由;

3.(3)若四邊形AC1A1C為矩形,請求出a和b應(yīng)滿足的關(guān)系式.

 

查看答案和解析>>

(本題滿分8分)

如圖所示,一次函數(shù)與反比例函數(shù)的圖象相交于A,B兩點,且與坐標軸的交點為,,點B的橫坐標為

 

(1)試確定反比例函數(shù)的解析式;

(2)求△AOB的面積;

(3)直接寫出不等式的解.

 

查看答案和解析>>

(本題滿分9分)如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O

上,過點C的切線交AD的延長線于點E,且AE⊥CE,連接CD.

(1)求證:DC=BC;  

(2)若AB=5,AC=4,求tan∠DCE的值.

 

查看答案和解析>>

1.C   2.B   3.C   4.C   5.A  6.D  7.C   8.B  9.B  10.B

11.3    12. 360°-36°?n       13.3.98cm     14.210cm,    15. 5   16.y= 2x+2

17.∵(x+5)(x+7)=(x2+12x+35+1-1)=(x+6)2-1<(x+6)2

∴(x+5)(x+7)< (x+6)2

18.(1)圖略                                        ……………………    3分

(2)12個單位                                        ………………   6分

19.解:連接DE,BF.

∵四邊形ABCD是矩形,

∴AB∥CD.   ∠ODF=∠OBE                    …………   1分

∵EF垂直平分BD,

∴OD=OB

∴ΔDOF≌ΔBOE(ASA)                            ………    2分

∴DF=BE

∴四邊形BFDE是平行四邊形。

∵EF垂直平分BD,

FD=FB(線段的垂直平分線上的點到線段兩端點的距離相等)

∴平行四邊形BFDE是菱形               ………    4分

∴DF=BF=DE=EB,OE=OF.

在RtΔDOF中,DF=+=250

∴S菱形DEBF=BD?EF=DF?BC

Х400х300=250?BC

∴BC=240                           …………   5分

在RtΔBCF中 FC===70

∴CD=DF+FC=250+70=320

∴S梯形ABCD=CD?BC=320×240=76800m2      ……………………..    6分

答略                      ……………     7分

20.解:將圓柱有相對的A.B垂直切開,并將半圓柱側(cè)面展開成一個矩形, ………   2分

如圖所示,作BO⊥AO于O,則AO,BO分別平行于矩形的兩邊,作A點關(guān)于D點的對稱點Aㄆ,連AㄆB,則ΔA`

BO為直角三角形,且BO==12,A`O=(15-3)+4=16, …………    4分

有勾股定理得    

A`B2=A´O2+BO2=162+122=400,

∴A´B=20                                  ………………  7分

故蜘蛛沿B外_壁C內(nèi)_壁A路線爬行最近,

且它至少要走20cm                            ………    8分

 

21.因為0.1x+0.01x2,而12,所以0.1x+0.01x2=12,………………   2分

解之,得, 舍去,故<40,

所以甲車未超速行駛。 ………………………………………………     4分

設(shè)=kx,把(60,15)代入,得 15=60k。解得,k=。

=x.          ………………………………………………  6分

由題意知 10<x<12解之得:40<x<48.

所以乙車超速行駛!      8分

22.(1)∵a2=b2+c2-2bccosA=25+49-2?5?7?cos60º= 39

  ∴a=                                      ……………   2分

∵b2=a2+c2-2accosB. 

∴cosB==

∠B≈36º                                         ……………   3分

∴∠C=180º-60º-36º=84º                         ……………    4分

(2).由余弦定理得  72=82+92-2×8×9cosA

得 cosA=

∴∠A≈48º                                               ………… 6分

再得  82=92+72-2×9×7cosB

得 cosB=

∠B≈58º                                      ………………              7分

∴∠C=180º-∠A-∠B=74º                              ………           8分

23.(1).連接BE,可得ΔABE∽ΔADB.               ………………               2分

∴ AB2=AD?AE                               ………………                4分

(2).成立                                     ………………                5分

連接EB,可證ΔAEB∽ΔABD,                     ………………              7分

∴仍可得AB2=AD?AE                               ……………            8分

24.(1)y=60-(x-100)0.02x   (0<x<550)              ………………         4分

(2)根據(jù)題意可列方程為:6000=[60-(x-100)0.02]x-40x

整理可得:x2-3100x+300000=0            ……………….         6分

       (x-500)(x-600)=0                              …………   8分

      x1=500     x2=600(舍去)                      ………………      9分    

銷售商訂購500個時,該廠可獲利潤6000元。                ……….  10分   

25.(1)S梯形OPFE=(OP+EF)?OE=(25+27)

設(shè)運動時間為t秒時,梯形OPFE的面積為y

則y=(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98.         ………………  3分

所以當t=7秒時,梯形OPFE的面積最大,最大面積為98;    ……………… 4分

(2)當S梯形OPFE=SΔAPF時,

-2t2+28t=,解得t1=8,t2=0(舍去)。                       ……………  7分

當t=8秒時,F(xiàn)P=8                                  ………………   8分

(3) 由,                        ………………    10分

且∠OAB=∠OAB,                                     ………   11分

可證得ΔAF1P1∽ΔAF2P2                                            ……  12分

 


同步練習冊答案