(3)設(shè).若在[1,e]上至少存在一點(diǎn).使得成立.求實(shí)數(shù)p的取值范圍. 第2卷 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).

(1)若p=2,求曲線處的切線方程;

(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;

(3)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)

數(shù)p的取值范圍.

 

查看答案和解析>>

已知函數(shù).

(1)若p=2,求曲線處的切線方程;

(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實(shí)數(shù)p的取值范圍;

(3)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)p的取值范圍.

 

查看答案和解析>>

設(shè)f(x)=px--2lnx.  
(1)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍; 
(2)設(shè),且p>0,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍。

查看答案和解析>>

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

(2012•宿州三模)設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)當(dāng)p=2時(shí),求與函數(shù)y=f(x)的圖象在點(diǎn)A(1,0)處相切的切線方程;
(2)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求p的取值范圍;
(3)若在[1,e]上至少存在一點(diǎn)xo,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

必修

一、填空題

1、8  2、  3、2|P|  4、  5、向左移,在把各點(diǎn)的橫坐標(biāo)伸長到原來的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答題

15.解:(Ⅰ).………… 4分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或,

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2時(shí),.     ………………… 4分

n=1時(shí),,適合上式,

.               ………………… 5分

(Ⅱ),.          ………………… 8分

∴數(shù)列是首項(xiàng)為4、公比為2的等比數(shù)列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1時(shí),的最大值為20200,=10時(shí),的最小值為12100。

19、⑴易知AB恒過橢圓的右焦點(diǎn)F(,0)    ⑵ S=       ⑶存在

20、⑴

⑶(,

附加題選修參考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值為2和3 ,對(duì)應(yīng)的特征向量分別為,

,橢圓在矩陣的作用下對(duì)應(yīng)得新方程為

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步練習(xí)冊(cè)答案