當(dāng)時.有最大值.此時.或---12分 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.

 

x

0.25

0.5

0.75

1

1.1

1.2

1.5

2

3

5

y

8.063

4.25

3.229

3

3.028

3.081

3.583

5

9.667

25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:

(1)函數(shù)在區(qū)間                   上遞增.當(dāng)                時,                  ;

(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

 

查看答案和解析>>

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間                  上遞增.當(dāng)               時,                 ;
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.
x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:
(1)函數(shù)在區(qū)間                  上遞增.當(dāng)               時,                 ;
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4
,
當(dāng)x=-
1
2
時,u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當(dāng)x=-
1
2
時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

如圖,有一直角墻角,兩邊的長度足夠長,在P處有一棵樹與兩墻的距離分別是a米(0<a<12)、4米,不考慮樹的粗細(xì). 現(xiàn)在想用16米長的籬笆,借助墻角圍成一個矩形的花圃ABCD, 并要求將這棵樹圍在花圃內(nèi)或在花圃的邊界上,設(shè)BC=x米,此矩形花圃的面積為y平方米。
(Ⅰ)寫出y關(guān)于x的函數(shù)關(guān)系,并指出這個函數(shù)的定義域;
(Ⅱ)當(dāng)BC為何值時,花圃面積最大?

查看答案和解析>>


同步練習(xí)冊答案