解法1:(Ⅰ)證明:取BE的中點(diǎn)O.連OC.OF.DF.則2OFBA ------2分 查看更多

 

題目列表(包括答案和解析)

(2010•濰坊三模)如圖,過(guò)拋物線C1:y=x2-1上一點(diǎn)P(不與頂點(diǎn)重合)的切  線l與曲線C2x2+
y24
=1
相交所得的弦為AB.
(1)證明:弦AB的中點(diǎn)在一條定直線l0上;
(2)過(guò)P點(diǎn)且平行于(1)中直線l0的直線與曲線C1的另一交點(diǎn)為Q,與l平行的直線與曲線C1交于E、F兩點(diǎn),已知∠EQP=45°,試判斷△EQF的形狀,并說(shuō)明理由.

查看答案和解析>>

如圖,過(guò)拋物線C1:y=x2-1上一點(diǎn)P(不與頂點(diǎn)重合)的切 線l與曲線C2數(shù)學(xué)公式相交所得的弦為AB.
(1)證明:弦AB的中點(diǎn)在一條定直線l0上;
(2)過(guò)P點(diǎn)且平行于(1)中直線l0的直線與曲線C1的另一交點(diǎn)為Q,與l平行的直線與曲線C1交于E、F兩點(diǎn),已知∠EQP=45°,試判斷△EQF的形狀,并說(shuō)明理由.

查看答案和解析>>

如圖,在三棱錐中,是正三角形,,D的中點(diǎn),二面角為120,.取AC的中點(diǎn)O為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示,BDz軸于點(diǎn)E.

(I)求B、D、P三點(diǎn)的坐標(biāo);

(II)求異面直線ABPC所成的角;

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫(xiě)適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過(guò)E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫(xiě)適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

(1)證明:在截面A1EC內(nèi),過(guò)E作EG⊥A1C,G是垂足.
①∵_(dá)_____
∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵_(dá)_____
∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵_(dá)_____
∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵_(dá)_____
∴FG∥AA1,△AA1C∽△FGC,
⑤∵_(dá)_____
,即

查看答案和解析>>


同步練習(xí)冊(cè)答案