又因?yàn)?單調(diào)遞增, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。

解:(1),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號,

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>

下列說法:
①映射一定是函數(shù);
②函數(shù)的定義域可以為空集;
③存在既是奇函數(shù)又是偶函數(shù)的函數(shù)
④y=1因?yàn)闆]有自變量,所以不是函數(shù);
⑤若函數(shù)y=f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上也單調(diào)遞增,則在(-∞,1)∪(1,+∞)上單調(diào)遞增.
其中不正確的個(gè)數(shù)( 。

查看答案和解析>>

下列說法:
①映射一定是函數(shù);
②函數(shù)的定義域可以為空集;
③存在既是奇函數(shù)又是偶函數(shù)的函數(shù)
④y=1因?yàn)闆]有自變量,所以不是函數(shù);
⑤若函數(shù)y=f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上也單調(diào)遞增,則在(-∞,1)∪(1,+∞)上單調(diào)遞增.
其中不正確的個(gè)數(shù)( )
A.4
B.3
C.2
D.1

查看答案和解析>>

下列說法:
①映射一定是函數(shù);
②函數(shù)的定義域可以為空集;
③存在既是奇函數(shù)又是偶函數(shù)的函數(shù)
④y=1因?yàn)闆]有自變量,所以不是函數(shù);
⑤若函數(shù)y=f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上也單調(diào)遞增,則在(-∞,1)∪(1,+∞)上單調(diào)遞增.
其中不正確的個(gè)數(shù)( )
A.4
B.3
C.2
D.1

查看答案和解析>>

下列說法:
①映射一定是函數(shù);
②函數(shù)的定義域可以為空集;
③存在既是奇函數(shù)又是偶函數(shù)的函數(shù)
④y=1因?yàn)闆]有自變量,所以不是函數(shù);
⑤若函數(shù)y=f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上也單調(diào)遞增,則在(-∞,1)∪(1,+∞)上單調(diào)遞增.
其中不正確的個(gè)數(shù)


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>


同步練習(xí)冊答案