A. B. C. D.解析:2.3兩道題都要用函數(shù)的思想來解決.注意到等差數(shù)列的前n項和是關于n的二次函數(shù).找出對稱軸. 查看更多

 

題目列表(包括答案和解析)

設函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、d∈R)滿足:?x∈R都有f(x)+f(-x)=0,且x=1時,f(x)取極小值數(shù)學公式
(1)f(x)的解析式;
(2)當x∈[-1,1]時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直:
(3)設F(x)=|xf(x)|,證明:數(shù)學公式時,數(shù)學公式

查看答案和解析>>

設函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、d∈R)滿足:x∈R都有f(x)+f(﹣x)=0,且x=1時,f(x)取極小值
(1)f(x)的解析式;
(2)當x∈[﹣1,1]時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直:
(3)設F(x)=|xf(x)|,證明:時,

查看答案和解析>>

(本題滿分12分)設函數(shù) (a、b、c、d∈R)滿足:
對任意 都有,,
(1)的解析式;
(2)當時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直;
(3)設 ,證明:時,

查看答案和解析>>

設函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、d∈R)滿足:?x∈R都有f(x)+f(-x)=0,且x=1時,f(x)取極小值
(1)f(x)的解析式;
(2)當x∈[-1,1]時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直:
(3)設F(x)=|xf(x)|,證明:時,

查看答案和解析>>

設函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、d∈R)滿足:?x∈R都有f(x)+f(-x)=0,且x=1時,f(x)取極小值
(1)f(x)的解析式;
(2)當x∈[-1,1]時,證明:函數(shù)圖象上任意兩點處的切線不可能互相垂直:
(3)設F(x)=|xf(x)|,證明:時,

查看答案和解析>>


同步練習冊答案