∴直線OM的方程為y=-x. 查看更多

 

題目列表(包括答案和解析)

已知圓方程為:x2+y2=4.
(Ⅰ)直線L過點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2
3
,求直線L方程.
(Ⅱ)過圓C上一動點(diǎn)M作平行于X軸的直線m,設(shè)m與y軸交點(diǎn)為N,若向量
OQ
=
OM
+
ON
(O為原點(diǎn)),求動點(diǎn)Q軌跡方程.

查看答案和解析>>

已知橢圓C的方程為:,其焦點(diǎn)在x軸上,離心率
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)P(x,y)滿足,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為(a>0),其焦點(diǎn)在x軸上,點(diǎn)Q為橢圓上一點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)P(x,y)滿足,其中M、N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為,求證:為定值;
(3)在(2)的條件下探究:是否存在兩個定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為:,其焦點(diǎn)在x軸上,離心率
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)P(x,y)滿足,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C的方程為:,其焦點(diǎn)在x軸上,離心率
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)P(x,y)滿足,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案