題目列表(包括答案和解析)
A.充分非必要條件 B.必要非充分條件
C.充要條件 D.既不充分又不必要條件
如果甲是乙的必要不充分條件,乙是丙的充要條件,丙是丁的必要非充分條件,則丁是甲的
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
一. ADBCA CABBA BC
二. 13.3; 14.(-∞,4]; 15. ; 16. .
三.
17. 解:解:由,得 …3分
………………6分
又 = !10分
18. 解:(I)分別記“客人游覽甲景點”,“客人游覽乙景點”,“客人游覽丙景點”為事件A1,A2,A3.由已知A1,A2,A3相互獨立,P(A1)= 0.4,P(A2)= 0.5,P(A3)= 0.6.
P(ξ= 3)= P(A1?A2?A3)+P(A1?A2?A3)
= P(A1)P(A2)P(A3)+P(A1)P(A2)P(A3))
= 2×0.4×0.5×0.6=
(Ⅱ)客人游覽的景點數(shù)的可能取值為0,1,2,3.相應(yīng)地,客人沒有游覽的景點數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.∴P(ξ= 1)= 1-0.24= 0.76. ………12分
19、解:解法一:(Ⅰ)取中點,連結(jié).
為正三角形,.
正三棱柱中,平面平面,
平面.
連結(jié),在正方形中,分別為
的中點,
,
.………………………………….3分
在正方形中,,
平面.………………………………….5分
(Ⅱ)設(shè)與交于點,在平面中,作于,連結(jié),由(Ⅰ)得平面.
,
為二面角的平面角.………………………………….9分
在中,由等面積法可求得,
又,
.
所以二面角的正弦值.………………………………….12分
解法二:(Ⅰ)取中點,連結(jié).
為正三角形,.$
平面.
取中點,以為原點,,,的方向為軸的正方向建立空間直角坐標(biāo)系,則,,,,…….3分
,,.
,,
,.
平面.………………………………….6分
(Ⅱ)設(shè)平面的法向量為.
,.
,,
令得為平面的一個法向量.…………………………9分
由(Ⅰ)知平面,
為平面的法向量.
,.
二面角的正弦值…………………………12
20. 解:(1)由已知得解得.
設(shè)數(shù)列的公比為,由,可得.
又,可知,
即, 解得.
由題意得.. 故數(shù)列的通項為.…………6
(2)由于
由(1)得 又 是等差數(shù)列.
==
故.…………………………12
21.解:解:(Ⅰ)由題意知f′(x)= ax2+bx-a2,且f′(x)= 0的兩根為x1、x2.
∴x1+x2= - x1x2= -a.
∴(x2-x1)2= (x2+x1)2-4x1x2= 4.
∴()2+
∴b2= (4-
(Ⅱ)由(1)知b2= (4-
令函數(shù)g(a)= (4-
g′(a)=
-
令g'(a)= 0 ∴a1= 0,a2= .
函數(shù)g(a)在(0,)上為增函數(shù),(,1)上為減函數(shù).
∴g(a)max= g()= .
∴b2≤.
∴|b|≤.…………………………12分
22.解:(Ⅰ)由雙曲線的定義可知,曲線是以為焦點的雙曲線的左支,且,易知
故曲線的方程為…………………………3
設(shè),由題意建立方程組
消去,得
又已知直線與雙曲線左支交于兩點,有
解得………………5
∵
依題意得
整理后得
∴或但 ∴
故直線的方程為…………………………8
設(shè),由已知,得
∴,
又,
∴點
將點的坐標(biāo)代入曲線的方程,得得,
但當(dāng)時,所得的點在雙曲線的右支上,不合題意
∴.…………………………10
點的坐標(biāo)為
到的距離為
∴的面積…………………………12
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com