(2)若二面角的大小為. 查看更多

 

題目列表(包括答案和解析)

若二面角α-l-β的大小為
π
3
,直線m⊥α,則β所在平面內的直線與m所成角的取值范圍是( 。
A、(0,
π
2
)
B、[
π
3
,
π
2
]
C、[
π
6
π
2
]
D、[
π
6
,
3
]

查看答案和解析>>

若二面角α-l-β的大小為
6
,直線m⊥α,直線n?β,則直線m與n所成的角取值范圍是(  )

查看答案和解析>>

若二面角M -l -N的平面角大小為,直線mM,則平面N內的直線與m所成角的取值范圍是

A.           B.       C.       D.

查看答案和解析>>

若二面角α-l-β的大小為
6
,直線m⊥α,直線n?β,則直線m與n所成的角取值范圍是(  )
A.(0,  
π
2
)
B.[
π
3
,  
π
2
]
C.[
π
6
,  
π
2
]
D.[
π
6
,  
π
3
]

查看答案和解析>>

若二面角α-l-β的大小為
π
3
,直線m⊥α,則β所在平面內的直線與m所成角的取值范圍是(  )
A.(0,
π
2
)
B.[
π
3
π
2
]
C.[
π
6
,
π
2
]
D.[
π
6
,
3
]

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

 

二、填空題:本大題7小題,每小題4分,共28分.

11、;   12、 ;   13、;   14、;   15、;  16、 ;17、。

 

三、解答題

18、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即

 …………………………………………………………………(9分) 

 取中點,則平面,

就是與平面所成的角。   …………………………(11分)

,

所以與平面所成的角的大小為。 …………………………(14分)

(用向量方法,相應給分)

 

19、(1),,  …………(7分)

    (2),當時,;當時,

,而,

        ……………………………………………(14分)

 

20、(1)當,當k=1時,

 ………………………………………  (7分) 

(2)由已知,又設,則

,

知當時,為增函數(shù),則知為增函數(shù)。…………………(14分)

(用導數(shù)法相應給分)

21、.解:(1)、設,則,

 ∵點P分所成的比為   ∴    ∴  

     代入中,得 為P點的軌跡方程.

時,軌跡是圓. …………………………………………………(7分)

(2)、由題設知直線l的方程為, 設

聯(lián)立方程組  ,消去得: 

∵ 方程組有兩解  ∴   ∴    

   ∵

      ∴    

 又 ∵    ∴    解得(舍去)或

∴ 曲線C的方程是  ……………………………………………(14分)

22、解(1)   ………………………………………………(5分) 

猜想    ,    …………………………………………………………(7分)

證明(略)  ……………………………………………………………………(10分)

  (2),要使恒成立,

恒成立  

恒成立.

(i)當為奇數(shù)時,即恒成立, 又的最小值為1,  

(ii)當為偶數(shù)時,即恒成立,  又的最大值為,

         即,又,為整數(shù),

 ∴,使得對任意,都有 …………………………………( 16分)

 

 


同步練習冊答案