③,④.其中真命題的序號是 ▲ .說明:請注意有關(guān)常用邏輯用語中的一些特殊符號.如果題中的集合R改成Z.真命題的序號是①④.如果R改成復(fù)數(shù)集C呢? 查看更多

 

題目列表(包括答案和解析)

在中學階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β

(Ⅰ)計算:(2,3)⊙(-1,4);

(Ⅱ)請用數(shù)學符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;

(Ⅲ)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;

(Ⅳ)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>


同步練習冊答案