解得: (2)若C地不在A.B兩地之間時.依題意.得方程: 查看更多

 

題目列表(包括答案和解析)

甲、乙兩人在解方程組
mx+5y=13(1)
4x-ny=-2(2)
時,甲看錯了①式中的x的系數(shù),解得
x=
107
47
y=
58
47
;乙看錯了方程②中的y的系數(shù),解得
x=
81
76
y=
17
19
,若兩人的計算都準確無誤,請寫出這個方程組,并求出此方程組的解.

查看答案和解析>>

閱讀材料:
(1)等高線概念:在地圖上,我們把地面上海拔高度相同的點連成的閉合曲線叫等高線,
例如,如圖1,把海拔高度是50米,100米,150米的點分別連接起來,就分別形
成50米,100米,150米三條等高線.
(2)利用等高線地形圖求坡度的步驟如下:(如圖2)
步驟一:根據(jù)兩點A,B所在的等高線地形圖,分別讀出點A,B的高度;A,B兩點的
鉛直距離=點A,B的高度差;
步驟二:量出AB在等高線地形圖上的距離為d個單位,若等高線地形圖的比例尺為
1:m,則A,B兩點的水平距離=dn;
步驟三:AB的坡度=
鉛直距離
水平距離
=
點A,B的高度差
dn1

請按照下列求解過程完成填空.
某中學學生小明和小丁生活在山城,如圖3,小明每天上學從家A經(jīng)過B沿著公路AB,BP到學校P,小丁每天上學從家C沿著公路CP到學校P.該山城等高線地形圖的比例尺為:1:50000,在等高線地形圖上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米
(1)分別求出AB,BP,CP的坡度(同一段路中間坡度的微小變化忽略不計);
(2)若他們早晨7點同時步行從家出發(fā),中途不停留,誰先到學校?(假設當坡度在
1
10
1
8
之間時,小明和小丁步行的平均速度均約為1.3米/秒;當坡度在
1
8
1
6
之間
時,小明和小丁步行的平均速度均約為1米/秒)
解:(1)AB的水平距離=1.8×50000=90000(厘米)=900(米),AB的坡度=
200-100
900
=
1
9
;
BP的水平距離=3.6×50000=180000(厘米)=1800(米),BP的坡度=
400-200
1800
=
1
9

CP的水平距離=4.2×50000=210000(厘米)=2100(米),CP的坡度=
 

(2)因為
1
10
1
9
1
8
,所以小明在路段AB,BP上步行的平均速度均約為1.3米/秒,因為
 
,所以小丁在路段CP上步行的平均速度約為
 
米/秒,斜坡AB的距離=
9002+1002
=906(米),斜坡BP的距離=
18002+2002
=1811(米),斜坡CP的距離=
21002+3002
=2121(米),所以小明從家道學校的時間=
906+1811
1.3
=2090(秒).小丁從家到學校的時間約為
 
秒.因此,
 
先到學校.精英家教網(wǎng)

查看答案和解析>>

(2011•資陽)在某校校園文化建設活動中,小彬同學為班級設計了一個班徽,這個班徽圖案由一對大小相同的較大半圓挖去一對大小相同的較小半圓而得.如圖,若它們的直徑在同一直線上,較大半圓O1的弦AB∥O1O2,且與較小半圓O2相切,AB=4,則班徽圖案的面積為( 。

查看答案和解析>>

25、閱讀理解下列材料然后回答問題:
解方程:x2-3|x|+2=0
解:(1)當x≥0時,原方程化為x2-3x+2=0,解得:
x1=2,x2=1
(2)當x<0時,原方程化為x2+3x+2=0,解得:x1=1,x2=-2.
∴原方程的根是x1=2,x2=1,x3=1,x4=-2.
請觀察上述方程的求解過程,試解方程x2-|x|-2=0.

查看答案和解析>>

精英家教網(wǎng)活用知識,解決問題.
(1)輪船順水航行40千米所需時間和逆水航行30千米所需時間相等,已知水流速度為3千米/小時,求輪船在靜水中的速度.
(2)將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,設較短的直角邊為1
①四邊形ABCD是平行四邊形嗎?說出你的結論和理由
 
;
②將Rt△BCD沿射線BD方向平移到Rt△B1C1D③位置,四邊形ABC1D1是平行邊邊形嗎?說明你的結論和理由
 

③在Rt△BCD沿射線BD方向平移的過程中,當B的移動距離為
 
四邊形ABC1D1為矩形,其理由是
 


(3)閱讀理解:
解方程x4-3x2+2=0,設x2=y,則原方程可分為y2-3y+2=0,解得:y1=2,y2=1.
(1)當y=2時,x2=2,解得x=±
2
;
(2)當y=1時,x2=1,解題x=±1,故原方程的解是:x1=
2
,x2=-
2
,x3=1,x4=-1,請利用以上方法解方程:(x2-2x)2-2x2+4x-3=0.

查看答案和解析>>


同步練習冊答案