已知雙曲線C的中心在原點.拋物線的焦點是雙曲線C的一個焦點.且雙曲線過點(1, ). (1)求雙曲線的方程; 查看更多

 

題目列表(包括答案和解析)

(本小題満分12分) 已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為。

(1) 求雙曲線C的方程;

(2) 若直線l與雙曲線C恒有兩個不同的交點AB,且(其中O為原點),求k的取值范圍。

 

 

查看答案和解析>>

(本小題滿分12分). 已知中心在原點的雙曲線C的一個焦點是一條漸近線的方程是

  (1)求雙曲線C的方程;

  (2)若以為斜率的直線與雙曲線C相交于兩個不同的點M,N,且線段MN的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍.

 

 

查看答案和解析>>

(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|數(shù)學(xué)公式|=6,數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,數(shù)學(xué)公式=數(shù)學(xué)公式+數(shù)學(xué)公式,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若數(shù)學(xué)公式=3數(shù)學(xué)公式,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

(本小題滿分12分)雙曲線的離心率為,右準(zhǔn)線為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求m的值.  

查看答案和解析>>

(本小題滿分12分)

設(shè)平面直角坐標(biāo)中,O為原點,N為動點,過點M作軸于M1,過N作丄x軸于點N1,,記點R的軌跡為曲線C。 
(I)求曲線C的方程;

(II )已知直線L與雙曲線C1:的右支相交于P、Q兩點(其中點P在第一象限),線段OP交軌跡C于A,若,,求直線L的方程

 

查看答案和解析>>

一、選擇題(60分)

BCCA    BDAB    BAAA

二、填空題(16分)

13、

14、0

15、1

16、 

三、解答題(74分)

17、解(1),

     ∴遞增區(qū)間為----------------------6分

  (2)

    而,

      故    --------------- 12分

18、解:(1)3個旅游團選擇3條不同線路的概率為:P1=…………3分

       (2)恰有兩條線路沒有被選擇的概率為:P2=……6分

       (3)設(shè)選擇甲線路旅游團數(shù)為ξ,則ξ=0,1,2,3

       P(ξ=0)=       Pξ=1)=    

       Pξ=2)=      Pξ=3)=

ξ

0

1

2

3

                        

      ∴ξ的分布列為:

      

 

 

      ∴期望Eξ=0×+1×+2×+3×=………………12分

19、

(1)過O作OF⊥BC于F,連接O1F,

∵OO1⊥面AC,∴BC⊥O1F,

∴∠O1FO是二面角O1-BC-D的平面角,

∵OB=2,∠OBF=60°,∴OF=.

在Rt△O1OF在,tan∠O1FO=

∴∠O1FO=60° 即二面角O1―BC―D為60°

(2)在△O1AC中,OE是△O1AC的中位線,∴OE∥O1C

∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交線O1F.

   過O作OH⊥O1F于H,則OH是點O到面O1BC的距離,

        解法二:(1)∵OO1⊥平面AC,

        ∴OO1⊥OA,OO1⊥OB,又OA⊥OB,

        建立如圖所示的空間直角坐標(biāo)系(如圖)

        ∵底面ABCD是邊長為4,∠DAB=60°的菱形,

        ∴OA=2,OB=2,

        則A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)

        設(shè)平面O1BC的法向量為=(x,y,z),

        ,

        ,則z=2,則x=-,y=3,

        =(-,3,2),而平面AC的法向量=(0,0,3)

        ∴cos<,>=

        設(shè)O1-BC-D的平面角為α, ∴cosα=∴α=60°.

        故二面角O1-BC-D為60°.                

        (2)設(shè)點E到平面O1BC的距離為d,

         ∵E是O1A的中點,∴=(-,0,),

        則d=∴點E到面O1BC的距離等于。

        20、解:(1)都在斜率為6的同一條直線上,

        ,即

        于是數(shù)列是等差數(shù)列,故.………………3分

        ,,又共線,

             …………4分

                  

                       .    ………6分

        當(dāng)n=1時,上式也成立.

        所以an.  ……………7分

        (2)把代入上式,

        *   12<a≤15,

        *   當(dāng)n=4時,取最小值,* 最小值為a4=18-2a.   …………12分

        21、: (1) 由題意設(shè)雙曲線方程為,把(1,)代入得(*)

        的焦點是(,0),故雙曲線的(2分)與(*)

        聯(lián)立,消去可得,.

        (不合題意舍去)………(3分)

        于是,∴ 雙曲線方程為………(4分)

        (2) 由消去(*),當(dāng)

        )時,與C有兩個交點A、B    ………(5分)

        ① 設(shè)A(,),B(),因,故………(6分)

        ,由(*)知,,代入可得

        ………(7分)

         化簡得

        ,檢驗符合條件,故當(dāng)時,………(8分)

        ② 若存在實數(shù)滿足條件,則必須………(10分)

         由(2)、(3)得………(4)

        代入(4)得                      ………(11分)

        這與(1)的矛盾,故不存在實數(shù)滿足條件.          ………(12分)

        22、:(1)由已知: = ………………………2分

           依題意得:≥0對x∈[1,+∞恒成立………………4分

           ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1……5分

          (2)∵a=1   ∴由(1)知:fx)=在[1,+∞上為增函數(shù),

             ∴n≥2時:f)=  

           即:…7分  

               ∴……………………9分

        設(shè)gx)=lnxx  x∈[1,+∞, 則恒成立,

        gx)在[1+∞為減函數(shù)…………12分

        ∴n≥2時:g()=ln<g(1)=-1<0  即:ln<=1+(n≥2)

        綜上所證:nN*且≥2)成立. ……14分

         

         


        同步練習(xí)冊答案