解: (Ⅰ)將圓的一般方程化為標(biāo)準(zhǔn)方程 . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M
2-3
1-1
所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.已知矩陣M所對應(yīng)的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標(biāo).
C.已知圓的極坐標(biāo)方程為:
(1)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

在極坐標(biāo)系中,圓和直線相交于、兩點,求線段的長

【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運用。先將圓的極坐標(biāo)方程圓 即 化為直角坐標(biāo)方程即

然后利用直線 ,得到圓心到直線的距離,從而利用勾股定理求解弦長AB。

解:分別將圓和直線的極坐標(biāo)方程化為直角坐標(biāo)方程:

 即 即 ,

,  ∴  圓心,    ---------3分

直線 ,   ------6分

則圓心到直線的距離,----------8分

      即所求弦長為

 

查看答案和解析>>

已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓C的參數(shù)方程
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)將圓的參數(shù)方程化為普通方程;
(Ⅲ)求圓C上的點到直線的距離的最小值.

查看答案和解析>>

求圓心在直線l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為2
7
的圓的一般方程.

查看答案和解析>>


同步練習(xí)冊答案