人數(shù)(人) 查看更多

 

題目列表(包括答案和解析)

人數(shù)相同的八年級甲、乙兩班學(xué)生在同一次數(shù)學(xué)單元測試,班級平均分和方差如下:
.
x
=
.
x
=80,s2=240,s2=180,則成績較為穩(wěn)定的班級是(  )
A、甲班B、乙班
C、兩班成績一樣穩(wěn)定D、無法確定

查看答案和解析>>

9、人數(shù)相等的甲、乙兩班學(xué)生參加測驗(yàn),兩班的平均分相同,且S2=240,S2=200,則成績較穩(wěn)定的是( 。

查看答案和解析>>

精英家教網(wǎng)(人教版)已知拋物線y=ax2+bx+c(a>0)的對稱軸為直線x=-1,與x軸的一個交點(diǎn)為(x1,0),且0<x1<1,下列結(jié)論:①9a-3b+c>0;②b<a;③3a+c>0.其中正確結(jié)論的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

(人教版)已知:二次函數(shù)y=x2-(m+1)x+m的圖象交x軸于A(x1,0)、B(x2,0)兩點(diǎn),交y軸正半軸于點(diǎn)C,且x12+x22=10.
(1)求此二次函數(shù)的解析式;
(2)是否存在過點(diǎn)D(0,-
52
)的直線與拋物線交于點(diǎn)M、N,與x軸交于點(diǎn)E,使得點(diǎn)M、N關(guān)于點(diǎn)E對稱?若存在,求直線MN的解析式;若不存在,請說明理由.

查看答案和解析>>

人數(shù)相等的八(1)和八(2)兩個班學(xué)生進(jìn)行了一次數(shù)學(xué)測試,班級平均分和方差如下:
.
x1
=86
.
x2
=86
,S12=259,S22=186.則成績較為穩(wěn)定的班級是( 。
A、八(1)班
B、八(2)班
C、兩個班成績一樣穩(wěn)定
D、無法確定

查看答案和解析>>

閱卷須知:

1.一律用紅鋼筆或紅圓珠筆批閱.

2.為了閱卷方便,解答題中的推導(dǎo)步驟寫得較為詳細(xì),考生只要寫明主要過程即可.若考生的解法與本解法不同,正確者可參照評分參考給分,解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

一、選擇題(共8個小題,每小題4分,共32分)

題 號

1

2

3

4

5

6

7

8

答 案

B

D

A

C

B

A

D

A

 

二、填空題(共4個小題,每小題4分,共16分)

題 號

9

10

11

12

答 案

(或

 

三、解答題(共5個小題,每小題5分,共25分)

13. 解:

                    …………………………………3分

                                     

      .                                  …………………………………5分

 

14. 解:由不等式,得.        …………………………………1分

     由不等式,得.          …………………………………2分

        ∴ 原不等式組的解集是.      …………………………………3分

        在數(shù)軸上表示為:

 

 

 

                                                                                                                           …………………………………5分

 

15. 解:去分母,得

       .               …………………………………2分

去括號,整理,得

    .                             

解得 .                               …………………………………4分

經(jīng)檢驗(yàn),是原方程的根.                …………………………………5分

所以,原方程的根為

 

16.證明:∵ 四邊形ABCD是菱形,

,

.       …………………2分

中,

.                       …………………………………4分

.                             …………………………………5分

 

17.解:

      

       .                           …………………………………3分

,

.            …………………………………5分

四、解答題(共2個小題,每小題5分,共10分)

18. 解:(1)由題意得,所以,

∵ 在中,,,

    ∴ .即.            …………………………………1分

    在等腰梯形中,,∴

    ∴ .                               …………………………………3分

   (2)由(1)得,

        在中,,

        所以,.           …………………………………5分

 

19.(1)證明:如圖,聯(lián)結(jié).                 …………………………………1分

    ∵ ,

    ∴

    ∴ 是等邊三角形.

    ∴ ,

    ∴

    ∴ .                          …………………………………2分

    所以,是⊙的切線.                   …………………………………3分

  (2)解:作點(diǎn).

    ∵ ,∴

    又,,所以在中,

    在中,∵ ,∴

    由勾股定理,可求

    所以,.          …………………………………5分

五、解答題(本題滿分6分)

20. 解:

  (1)10%.          ……………………2分

  (2)340人,見右圖.……………………4分

  (3)約660萬人.    ……………………6分

 

 

 

六、解答題(共2個小題,第21題4分,第22題5分,共9分)

21. 解:(1)在拋物線中,令,得,

   解得).所以,

   ∵ ,∴

   所以,點(diǎn)的坐標(biāo)為(,0),               …………………………………1分

         點(diǎn)的坐標(biāo)為(,).             …………………………………2分

  (2)的面積,所以,當(dāng)時,

                                              …………………………………4分

 

22. 解:(1)跳棋子跳過路徑及各點(diǎn)字母如圖.   

                                 ………………3分

  (2)跳躍15次后,停在處,

     過,垂足為點(diǎn),

     則;

         由,∴

                                               …………………………………5分

 

 

 

 

 

七、解答題(本題滿分7分)

23.(1)證明:設(shè),,,的面積分別為,,矩形的面積為

由題意,得 ,,

,

∴ 四邊形的面積是定值.             …………………………………2分

   (2)解:由(1)可知,則

  又∵ ,

  ∴

  ∵

     ∴

     ∴ .                             …………………………………4分

   (3)解:①由題意知:.       …………………………………5分

   ②、兩點(diǎn)坐標(biāo)分別為,

  ∴

  ∴

  ∴

  ∴ 當(dāng)時,有最大值.           …………………………………7分

八、解答題(本題滿分7分)

24.解:(1)如圖(1),當(dāng)時,邊與⊙相切;

            如圖(2),當(dāng)時,邊與⊙相切;

            如圖(3),當(dāng)時,邊與⊙相切;

            如圖(4),當(dāng)時,邊所在直線與⊙相切.

                                               …………………………………4分

   (2)由(1),可知,當(dāng)時,半圓與直線圍成的區(qū)域與

        三邊圍成的區(qū)域有重疊部分,如圖(2)、(3)的陰影部分所示,重疊部分的面積分別為

                                           …………………………………7分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

九、解答題(本題滿分8分)

25.(1)證明:∵ ,∴ .∴

    又∵ ,∴

    ∴ .∴ .   …………………………………2分

   (2)證明:如圖,過點(diǎn),交于點(diǎn),

    ∵ 的中點(diǎn),容易證明

    在中,∵ ,∴

    ∴

    ∴ .                        …………………………………5分

  (3)解:的周長,

       設(shè),則

    ∵ ,∴ .即

    ∴

    由(1)知,

    ∴

    ∴ 的周長的周長

    ∴ 的周長與值無關(guān).               …………………………………8分

 


同步練習(xí)冊答案