.當(dāng)點(diǎn)為邊的中點(diǎn)時(shí).求證:, 查看更多

 

題目列表(包括答案和解析)

19、如圖,在△ABC中,AB=AC,以AB為直徑的圓O交BC于點(diǎn)D,交AC于點(diǎn)E,過點(diǎn)D作DF⊥AC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若過A點(diǎn)且與BC平行的直線交BE的延長線于G點(diǎn),連接CG.當(dāng)△ABC是等邊三角形時(shí),求∠AGC的度數(shù).

查看答案和解析>>

精英家教網(wǎng)如圖,在Rt△ABC中,∠B=90°,BC=5
3
,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,在?ABCD中,BC=2AB=4,點(diǎn)E、F分別是BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.

查看答案和解析>>

如圖,直線AB分別x,y軸正半軸相交于A(a,0)和B(0,b),直精英家教網(wǎng)y=
1
2
x+3
交于y軸與點(diǎn)E,交AB于點(diǎn)F
(1)當(dāng)a=6,b=6時(shí),求四邊形EOAF的面積
(2)若F為線段AB的中點(diǎn),且AB=4
5
時(shí),求證:∠BEF=∠BAO.

查看答案和解析>>

如圖,正方形ABCD中,G是CD邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊向正方形ABCD精英家教網(wǎng)外作正方形GCEF,連接DE,連接BG并延長交DE于H.
(1)求證:∠BGC=∠DEC.
(2)若正方形ABCD的邊長為1,試問當(dāng)點(diǎn)G運(yùn)動(dòng)到什么位置時(shí),BH垂直平分DE?

查看答案和解析>>

閱卷須知:

1.一律用紅鋼筆或紅圓珠筆批閱.

2.為了閱卷方便,解答題中的推導(dǎo)步驟寫得較為詳細(xì),考生只要寫明主要過程即可.若考生的解法與本解法不同,正確者可參照評(píng)分參考給分,解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

一、選擇題(共8個(gè)小題,每小題4分,共32分)

題 號(hào)

1

2

3

4

5

6

7

8

答 案

B

D

A

C

B

A

D

A

 

二、填空題(共4個(gè)小題,每小題4分,共16分)

題 號(hào)

9

10

11

12

答 案

(或

 

三、解答題(共5個(gè)小題,每小題5分,共25分)

13. 解:

                    …………………………………3分

                                     

      .                                  …………………………………5分

 

14. 解:由不等式,得.        …………………………………1分

     由不等式,得.          …………………………………2分

        ∴ 原不等式組的解集是.      …………………………………3分

        在數(shù)軸上表示為:

 

 

 

                                                                                                                           …………………………………5分

 

15. 解:去分母,得

       .               …………………………………2分

去括號(hào),整理,得

    .                             

解得 .                               …………………………………4分

經(jīng)檢驗(yàn),是原方程的根.                …………………………………5分

所以,原方程的根為

 

16.證明:∵ 四邊形ABCD是菱形,

,

.       …………………2分

中,

.                       …………………………………4分

.                             …………………………………5分

 

17.解:

      

       .                           …………………………………3分

,

.            …………………………………5分

四、解答題(共2個(gè)小題,每小題5分,共10分)

18. 解:(1)由題意得,所以,

∵ 在中,,,

    ∴ .即.            …………………………………1分

    在等腰梯形中,,∴

    ∴ .                               …………………………………3分

   (2)由(1)得,

        在中,,,,

        所以,.           …………………………………5分

 

19.(1)證明:如圖,聯(lián)結(jié).                 …………………………………1分

    ∵ ,

    ∴

    ∴ 是等邊三角形.

    ∴ ,

    ∴

    ∴ .                          …………………………………2分

    所以,是⊙的切線.                   …………………………………3分

  (2)解:作點(diǎn).

    ∵ ,∴

    又,所以在中,

    在中,∵ ,∴

    由勾股定理,可求

    所以,.          …………………………………5分

五、解答題(本題滿分6分)

20. 解:

  (1)10%.          ……………………2分

  (2)340人,見右圖.……………………4分

  (3)約660萬人.    ……………………6分

 

 

 

六、解答題(共2個(gè)小題,第21題4分,第22題5分,共9分)

21. 解:(1)在拋物線中,令,得,

   解得).所以,,

   ∵ ,∴

   所以,點(diǎn)的坐標(biāo)為(,0),               …………………………………1分

         點(diǎn)的坐標(biāo)為().             …………………………………2分

  (2)的面積,所以,當(dāng)時(shí),

                                              …………………………………4分

 

22. 解:(1)跳棋子跳過路徑及各點(diǎn)字母如圖.   

                                 ………………3分

  (2)跳躍15次后,停在處,

     過,垂足為點(diǎn),

     則

         由,∴

                                               …………………………………5分

 

 

 

 

 

七、解答題(本題滿分7分)

23.(1)證明:設(shè),,的面積分別為,矩形的面積為

由題意,得 ,,

,,

∴ 四邊形的面積是定值.             …………………………………2分

   (2)解:由(1)可知,則

  又∵ ,

  ∴

  ∵ ,,

     ∴

     ∴ .                             …………………………………4分

   (3)解:①由題意知:.       …………………………………5分

   ②、兩點(diǎn)坐標(biāo)分別為,

  ∴

  ∴

  ∴

  ∴ 當(dāng)時(shí),有最大值.           …………………………………7分

八、解答題(本題滿分7分)

24.解:(1)如圖(1),當(dāng)時(shí),邊與⊙相切;

            如圖(2),當(dāng)時(shí),邊與⊙相切;

            如圖(3),當(dāng)時(shí),邊與⊙相切;

            如圖(4),當(dāng)時(shí),邊所在直線與⊙相切.

                                               …………………………………4分

   (2)由(1),可知,當(dāng)時(shí),半圓與直線圍成的區(qū)域與

        三邊圍成的區(qū)域有重疊部分,如圖(2)、(3)的陰影部分所示,重疊部分的面積分別為

                                           …………………………………7分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

九、解答題(本題滿分8分)

25.(1)證明:∵ ,∴ .∴

    又∵ ,∴

    ∴ .∴ .   …………………………………2分

   (2)證明:如圖,過點(diǎn),交于點(diǎn)

    ∵ 的中點(diǎn),容易證明

    在中,∵ ,∴

    ∴

    ∴ .                        …………………………………5分

  (3)解:的周長,

       設(shè),則

    ∵ ,∴ .即

    ∴

    由(1)知,

    ∴

    ∴ 的周長的周長

    ∴ 的周長與值無關(guān).               …………………………………8分

 


同步練習(xí)冊(cè)答案