題目列表(包括答案和解析)
學(xué)校計(jì)劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學(xué)、英語、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學(xué)、理綜不安排在同一節(jié),則不同的安排方法共有 ( )
A.36種 | B.30種 | C.24種 | D.6種 |
A.36 種 | B.30 種 | C.24 種 | D.6 種 |
學(xué)校為制訂2008年高考工作計(jì)劃,決定對(duì)我校明年參加高考的考生進(jìn)行摸底,需要從應(yīng)屆理科、應(yīng)屆文科及補(bǔ)習(xí)班的同學(xué)中選取部分同學(xué)進(jìn)行問卷調(diào)查,應(yīng)該采取的抽樣方法是
A.分層抽樣 B.抽簽法
C.隨機(jī)數(shù)表法 D.以上三種方法都可以
科學(xué)家發(fā)現(xiàn),兩顆恒星A、B分別與地球相距5億光年、2億光年,且從地球上觀測(cè),它們的張角為60°,則這兩顆恒星之間的距離為
億光年
億光年
2億光年
2億光年
一、選擇題(每小題5分,共50分)
二、填空題(每小題4分,共28分)
三、解答題
18.解:(Ⅰ)由已有
(4分)
(6分)
(Ⅱ)由(1)且 (8分)
所以 (10分)
(12分)
(14分)
19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率 (4分)
(Ⅱ)可取的值是
(6分)
(8分)
(10分)
的分布列為
3
4
5
(12分)
所以的數(shù)學(xué)期望為 (14分)
20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC (4分)
(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE
建立如圖所示空間直角坐標(biāo)系,則
A(0,,0,0),P(0,0,),C(,0),D(,0)
,, (6分)
易求為平面PAC的一個(gè)法向量.
為平面PDC的一個(gè)法向量 (9分)
∴cos
故二面角D-PC-A的正切值為2. (11分)
(Ⅲ)設(shè),則
,
解得點(diǎn),即 (13分)
由得(不合題意舍去)或
所以當(dāng)為的中點(diǎn)時(shí),直線與平面所成角的正弦值為 (15分)
21.解:(Ⅰ)設(shè)直線的方程為:
由得,所以的方程為 (4分)
由得點(diǎn)的坐標(biāo)為.
可求得拋物線的標(biāo)準(zhǔn)方程為. (6分)
(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得 (8分)
設(shè)則
設(shè),則
(11分)
當(dāng)時(shí)上式是一個(gè)與無關(guān)的常數(shù).
所以存在定點(diǎn),相應(yīng)的常數(shù)是. (14分)
22.解:(Ⅰ)當(dāng)時(shí) (2分)
在上遞增,在上遞減
所以在0和2處分別達(dá)到極大和極小,由已知有
且,因而的取值范圍是. (4分)
(Ⅱ)當(dāng)時(shí),即
|