已知點(diǎn)(0.1)..直線.都是圓的切線(點(diǎn)不在軸上). 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

已知點(diǎn)M在橢圓+=1(ab>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F

(1)若圓My軸相切,求橢圓的離心率;

(2)若圓My軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形,求橢圓的方程.

查看答案和解析>>

(本題滿分14分)

已知點(diǎn)M在橢圓+=1(ab>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F

(1)若圓My軸相切,求橢圓的離心率;

(2)若圓My軸相交于A,B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形,求橢圓的方程.

查看答案和解析>>

(本題滿分14分)

已知中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個(gè)頂點(diǎn)坐標(biāo)為(0,1)

(1)求橢圓方程;

(2)直線過(guò)橢圓的右焦點(diǎn)交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線方程。

查看答案和解析>>

(本題滿分14分)

已知定點(diǎn)A(-2,0),動(dòng)點(diǎn)B是圓(F為圓心)上一點(diǎn),線段AB的垂直平分線交BF于P.

(1)求動(dòng)點(diǎn)P的軌跡方程;

(第20題圖)

 
(2)是否存在過(guò)點(diǎn)E(0,-4)的直線l交P點(diǎn)的軌跡于點(diǎn)R,T,且滿足O為原點(diǎn)).若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本題滿分14分)

已知定點(diǎn)A(-2,0),動(dòng)點(diǎn)B是圓(F為圓心)上一點(diǎn),線段AB的垂直平分線交BF于P.

(1)求動(dòng)點(diǎn)P的軌跡方程;

(2)是否存在過(guò)點(diǎn)E(0,-4)的直線l交P點(diǎn)的軌跡于點(diǎn)R,T,    且滿足O為原點(diǎn)).若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數(shù)學(xué)期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標(biāo)系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,,                  (6分)

易求為平面PAC的一個(gè)法向量.

為平面PDC的一個(gè)法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè),則

   ,

解得點(diǎn),即   (13分)

(不合題意舍去)或

所以當(dāng)的中點(diǎn)時(shí),直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設(shè)直線的方程為:

,所以的方程為                     (4分)

點(diǎn)的坐標(biāo)為.

可求得拋物線的標(biāo)準(zhǔn)方程為.                                       (6分)

(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得    (8分)     

設(shè)

設(shè),則

                                      (11分)

當(dāng)時(shí)上式是一個(gè)與無(wú)關(guān)的常數(shù).

所以存在定點(diǎn),相應(yīng)的常數(shù)是.                                     (14分)

 

22.解:(Ⅰ)當(dāng)時(shí)               (2分)

上遞增,在上遞減

所以在0和2處分別達(dá)到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當(dāng)時(shí),

市一次模理數(shù)參答―3(共4頁(yè))

                                        (7分)

,

上遞減,在上遞增.

從而上遞增

因此                           (10分)

(Ⅲ)假設(shè),即=

,

                                     (12分)

,(x)=0的兩根可得,

從而有

≥2,這與<2矛盾.                                

故直線與直線不可能垂直.                                               (15分)

 

 

 


同步練習(xí)冊(cè)答案