(2)若BC=2.試求四邊形是菱形的面積. 查看更多

 

題目列表(包括答案和解析)

如圖,在菱形ABCD中,∠B=45°,AE是BC上的高,將△ABE沿著AE所在的直線翻折得△AE.

(1)請你判斷△AFD的形狀并說明理由.

(2)若菱形邊長為2時,試求△AB′E與四邊形AECD重疊部分的面積.

查看答案和解析>>

已知:如圖,四邊形ABCD為菱形,AF⊥AD交BD于點E,交BC于點F.

(1)試說明:AD2DE·DB;

(2)過點E作EG⊥AF交AB于點G,若線段BE、DE(BE<DE)的長是方程x2-3mx+2m2=0(m>0)的兩個根,且菱形ABCD的面積為.求EG的長.

查看答案和解析>>

已知直線y=x+4與x軸、y軸分別交于AB兩點,∠ABC=60°,BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點出發(fā)沿AC向點C運動(不與AC重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與CA重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

已知直線y=x+4與x軸、y軸分別交于A、B兩點,∠ABC=60°,BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

已知直線y=x+4與x軸,y軸分別交于A、B兩點,∠ABC=60°,BC與x軸交于點C.

(1)試確定直線BC的解析式.

(2)若動點P從A點出發(fā)沿AC向點C運動(不與A、C重合),同時動點Q從C點出發(fā)沿CBA向點A運動(不與C、A重合),動點P的運動速度是每秒1個單位長度,動點Q的運動速度是每秒2個單位長度.設△APQ的面積為S,P點的運動時間為t秒,求S與t的函數關系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,當△APQ的面積最大時,y軸上有一點M,平面內是否存在一點N,使以A、Q、M、N為頂點的四邊形為菱形?若存在,請直接寫出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

1~10:CCBAB ADACC ; 11、;12、;13、65°;14、300π;15、①②④ð③,或 ②③④ð①;   16、94;

17、原式=……4分   = …… 5分(結果為近似值亦可)

18、x=3……4分,檢驗…… 5分.

19、上面是一個直四棱柱、下面是個圓錐的組合體.(2分)

 

                                  左視圖(4分)

 

 

 

 

 

 

20、⑴(每對1格給1分,共4分)

姓名

平均成績

中位數

眾數

方差(S2

王蘭

80

 

80

 

李州

 

85

 

260

⑵李州  ……………5分

⑶對于李州,爭取使學習成績穩(wěn)定下來,對于王蘭,爭取更好的成績  ……………7分

(只要合理,均給分)

21、設八(2)班參加活動的有x人,則小朋友有(3x+8)人,……1分

則根據題意得:,……3分,

解得9<x≤11 ……4分, ∵x是整數,∴x=10 或11.……5分

由于八(2)班參加活動的男女同學人數相等,所以只能是10人,故小朋友有38人.…7分

22、游戲對雙方不公平.……1分,游戲結果分析如下:“√”表示配成紫色,“×”表示不能夠配成紫色.

 

×

×

×

×

因為P(配成紫色)=,P(配不成紫色)=,所以小剛得分:,小明得分:.所以游戲對雙方不公平.……5分

修改規(guī)則為:若配成紫色,小剛得2分,否則小明得1分,此游戲對雙方才公平.(方法不唯一)……7分

23、(1) ∵∠ACB=90°,∠A=30°.

∴BC=AB.

又CD是斜邊AB的中線,

∴CD=AD=AB =BD.

∴BC =AD= CD =BD, ∴30°.

∵將△ABC沿CD折疊得△,

,30°,

60°-30°=30°,

∥CB. ∴四邊形為菱形. ……5分

(2)∵BC=2,∴BD=2,易得,∴S=2.……8分

24、(1)設垂直于墻的邊長為xm,則x(12-2x)=16,解得x=2,所以垂直于墻的邊長為2米. ……4分

(2)設垂直于墻的邊長為ym,則y(12-2y)=20,此方程無解,所以不能夠圍成.(本題也可以用二次函數說明,面積的最大值為18)……7分

25、(1)314;……3分(2)16.4;……8分(3)28.4>18,所以漁船A不會進入海洋生物保護區(qū). ……9分

26、(1),頂點(1,4);……4分

(2)Q(1,2);……5分

(3)設P().①當<0時,P();②當0≤≤3時,P();

③當>3時,P點不存在. 由①②③得點P的坐標為()或()……14分

 

 


同步練習冊答案