題目列表(包括答案和解析)
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時,恒成立;
(3)任取兩個不相等的正數(shù),且,若存在使成立,證明:.
【解析】(1)g(x)=lnx+,= (1’)
當(dāng)k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;
當(dāng)k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時,h(x),的變化情況如表
x |
1 |
(1,e) |
e |
(e,+) |
|
- |
0 |
+ |
|
h(x) |
e-2 |
↘ |
0 |
↗ |
所以h(x)0, ∴f(x)2x-e (5’)
設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時,=0所以G(x) 為減函數(shù), 所以G(x) G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時, 2x-ef(x)恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1 ∴l(xiāng)nx0 –lnx=-1–lnx===(10’) 設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵∴=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
(14分)
在直角坐標(biāo)系中,點P到兩點,的距離之和等于4,設(shè)點P的軌跡為,直線與C交于A,B兩點.
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若點A在第一象限,證明:當(dāng)k>0時,恒有||>||
(本小題滿分12分)
在直角坐標(biāo)系中,點P到兩點,的距離之和等于4,設(shè)點P的軌跡為,直線與C交于A,B兩點.
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若點A在第一象限,證明:當(dāng)k>0時,恒有||>||.
在直角坐標(biāo)系中,點P到兩點,的距離之和等于4,設(shè)點P的軌跡為,直線與軌跡C交于A,B兩點.
(Ⅰ)寫出軌跡C的方程; (Ⅱ)若,求k的值;
(Ⅲ)若點A在第一象限,證明:當(dāng)k>0時,恒有||>||
已知函數(shù)
(Ⅰ)求函數(shù)f (x)的定義域
(Ⅱ)確定函數(shù)f (x)在定義域上的單調(diào)性,并證明你的結(jié)論.
(Ⅲ)若x>0時恒成立,求正整數(shù)k的最大值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com