23.操作探究題: 查看更多

 

題目列表(包括答案和解析)

操作探究題:
(1)在平面直角坐標(biāo)系x0y中,畫(huà)出函數(shù)y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過(guò)原點(diǎn),②拋物線與x正半軸的另一個(gè)交點(diǎn)為Q,其頂點(diǎn)為P,且∠OPQ=90°;并寫(xiě)出拋物線的函數(shù)表達(dá)式;
(3)在上述直角坐標(biāo)系中,以O(shè)為圓心,OP為半徑畫(huà)圓,交兩坐標(biāo)軸于A、B(A點(diǎn)在左邊)兩點(diǎn),在拋物線(2)上是否存在一點(diǎn)M,使S△MOA:S△POB=2:1?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標(biāo)系x0y中,畫(huà)出函數(shù)y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過(guò)原點(diǎn),②拋物線與x正半軸的另一個(gè)交點(diǎn)為Q,其頂點(diǎn)為P,且∠OPQ=90°;并寫(xiě)出拋物線的函數(shù)表達(dá)式;
(3)在上述直角坐標(biāo)系中,以O(shè)為圓心,OP為半徑畫(huà)圓,交x軸于A、B(A點(diǎn)在左邊)兩點(diǎn),在拋物線(2)上是否存在一點(diǎn)M,使S△MOA:S△POB=2:1?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(4)在(3)的條件下,是否存這樣的直線過(guò)A點(diǎn)且與拋物線只有一個(gè)交點(diǎn)?若存在,直接寫(xiě)出其解析式.若不存在,說(shuō)明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標(biāo)系x0y中,畫(huà)出函數(shù)y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過(guò)原點(diǎn),②拋物線與x正半軸的另一個(gè)交點(diǎn)為Q,其頂點(diǎn)為P,且∠OPQ=90°;并寫(xiě)出拋物線的函數(shù)表達(dá)式;
(3)在上述直角坐標(biāo)系中,以O(shè)為圓心,OP為半徑畫(huà)圓,交x軸于A、B(A點(diǎn)在左邊)兩點(diǎn),在拋物線(2)上是否存在一點(diǎn)M,使S△MOA:S△POB=2:1?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(4)在(3)的條件下,是否存這樣的直線過(guò)A點(diǎn)且與拋物線只有一個(gè)交點(diǎn)?若存在,直接寫(xiě)出其解析式.若不存在,說(shuō)明理由.

查看答案和解析>>

操作探究題:
(1)在平面直角坐標(biāo)系x0y中,畫(huà)出函數(shù)y=-2x2的圖象;
(2)將拋物線y=-2x2怎樣平移,使得平移后的拋物線滿足:①過(guò)原點(diǎn),②拋物線與x正半軸的另一個(gè)交點(diǎn)為Q,其頂點(diǎn)為P,且∠OPQ=90°;并寫(xiě)出拋物線的函數(shù)表達(dá)式;
(3)在上述直角坐標(biāo)系中,以O(shè)為圓心,OP為半徑畫(huà)圓,交x軸于A、B(A點(diǎn)在左邊)兩點(diǎn),在拋物線(2)上是否存在一點(diǎn)M,使S△MOA:S△POB=2:1?若存在,求出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
(4)在(3)的條件下,是否存這樣的直線過(guò)A點(diǎn)且與拋物線只有一個(gè)交點(diǎn)?若存在,直接寫(xiě)出其解析式.若不存在,說(shuō)明理由.

查看答案和解析>>

操作探究:
數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問(wèn)題》時(shí),出示如圖1所示的長(zhǎng)方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫(huà)一條截線段MN,將紙片沿MN折疊,MB與DN交于點(diǎn)K,得到△MNK.如圖2所示:

探究:
(1)若∠1=70°,∠MKN=
40
40
°;
(2)改變折痕MN位置,△MNK始終是
等腰
等腰
 三角形,請(qǐng)說(shuō)明理由;
應(yīng)用:
(3)愛(ài)動(dòng)腦筋的小明在研究△MNK的面積時(shí),發(fā)現(xiàn)KN邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出△KMN的面積最小值為
12
,此時(shí)∠1的大小可以為
45°或135
45°或135
°
(4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了△MNK面積的最大值.請(qǐng)你求出這個(gè)最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案