題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
評分說明:
1. 第一題選擇題,選對得分,不選、錯選或多選一律得0分.
2. 第二題填空題,不給中間分.
3. 解答與證明題,本答案給出了一種或幾種解法供參考.如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制定相應(yīng)的評分細(xì)則.
4. 對計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后續(xù)部分的解答有較嚴(yán)重的錯誤,就不再給分.
5. 解答右側(cè)所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
6. 只給整數(shù)分?jǐn)?shù).
一、選擇題
題號
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
答案
C
B
B
D
A
A
C
B
A
C
D
B
二、填空題
題號
(13)
(14)
(15)
(16)
答案
25
-30
三、解答題
(17)解:(Ⅰ)∵// ∴………………………1分
∴. 即. …………………………3分
又∵為銳角,∴. …………………………………………4分
∴,∴. …………………………………………………5分
(Ⅱ)由余弦定理有,解得或
. ………………………………………………………………………8分
當(dāng)時,;當(dāng)時,
……………………………………10分
(18)解:(Ⅰ)∵隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品.
∴第一天通過檢查的概率為. ……………………………5分
(Ⅱ)同(Ⅰ),第二天通過檢查的概率為. …………………9分
因第一、第二天是否通過檢查相互獨(dú)立, ……………………………10分
所以,兩天全部通過檢查的概率為. …………12分
(19)解:(Ⅰ)∵為常數(shù),∴. ………………2分
∴.
又成等比數(shù)列,∴,解得或.…4分
當(dāng)時,不合題意,舍去. ∴. …………………6分
(Ⅱ)由(Ⅰ)知,. ………………………………………………8分
∴ …………10分
∴
…………………………………………12分
(20)解法一:
(Ⅰ)取的中點(diǎn),連,則∥,
∴或其補(bǔ)角是異面直線與所成的角. ……………………2分
設(shè),則,
.
∴. ………………………………4分
∵在中,. ……5分
∴異面直線與所成的角為. ……………………………6分
(Ⅱ)連結(jié),設(shè)是的中點(diǎn),過點(diǎn)作于,連結(jié),則
.又∵平面平面
∴平面. ………………………………………………………8分
而 ∴
∴是二面角的平面角. …………………………………9分
由=,=,,得.……………10分
即二面角為
∴所求二面角為. ………………………………12分
解法二:
(Ⅰ)如圖分別以、、所在的直線為軸、軸、軸建立空間直角坐標(biāo)
系. ……………………………………………………………………1分
設(shè),則、、、
、. ………………………………………………………2分
∴,
∴. ………………………5分
∴異面直線與所成的角為. ………………………………………6分
(Ⅱ)由題意知點(diǎn),設(shè)平面的一個法向量為
,
則, ∵,
∴,取,得. ………………8分
易知平面的一個法向量,
∴. …………………………………………11分
∴二面角的大小為. …………………………12分
(21)解:(Ⅰ), ………………………………………………2分
依題意,即解得
∴ ……………………………………………4分
(Ⅱ)由(Ⅰ)知,曲線與有兩個不同的
交點(diǎn),即在上有兩個不同的實(shí)數(shù)解…5分
設(shè),則, ………7分
由0的或
當(dāng)時,于是在上遞增;
當(dāng)時,于是在上遞減. ………………9分
依題意有. …………………11分
∴實(shí)數(shù)的取值范圍是. …………………………………12分
(22)解:(Ⅰ)設(shè)點(diǎn),由得. …………2分
由,得,即. …………… 4分
又點(diǎn)在軸的正半軸上,∴.故點(diǎn)的軌跡的方程是
. …………………………………………………………6分
(Ⅱ)由題意可知為拋物線:的焦點(diǎn),且、為過焦點(diǎn)的直線與拋物
線的兩個交點(diǎn),所以直線的斜率不為. ……………………………………7分
當(dāng)直線斜率不存在時,得,不合題意; ……8分
當(dāng)直線斜率存在且不為時,設(shè),代入得
,
則,解得. …………10分
代入原方程得,由于,所以,由,
得,∴. ……………………………………………………12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com