(文)P是雙曲線上的動點.若P到右焦點F的最短距離為a. (1)求雙曲線方程, (2)過焦點F作與漸近線垂直的直線l交雙曲線于M.N兩點.求|FM|?|FN|的值. 查看更多

 

題目列表(包括答案和解析)

(08年南師大附中調(diào)研二文) 設(shè)直線和雙曲線,若a、b為實數(shù),F(xiàn)1、F2為雙曲線的焦點,連結(jié)動直線上的定點P 和F1、F2,使△PF1F2 總是鈍角三角形,則b的取值范圍為

A.       B.       C.       D.

查看答案和解析>>

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點R在直線m上的射影S滿足,當(dāng)點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求。…………1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

    • <li id="iw6w4"><wbr id="iw6w4"></wbr></li>
      <acronym id="iw6w4"></acronym>
    • <table id="iw6w4"><cite id="iw6w4"></cite></table>
        • <object id="iw6w4"><rt id="iw6w4"></rt></object>

            解法二:(1)取B1C1的中點O,則A1O⊥B1C1,

            以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖,

               (2)是平面PAB的一個法向量,

               ………………5分

               ………………6分

              ………………8分

               (3)設(shè)P點坐標(biāo)為(),則

            設(shè)是平面PAB的一個法向量,與(2)同理有

                令

                同理可求得平面PA1B1的一個法向量   ………………10分

                要使平面PAB⊥平面PA1B1,只需

                  ………………11分

                解得: …………12分

            21.(理)解:(1)由條件得

               

               (2)①設(shè)直線m ……5分

               

                ②不妨設(shè)M,N的坐標(biāo)分別為

            …………………8分

            因直線m的斜率不為零,故

               (文)解:(1)設(shè)  …………2分

               

                故所求雙曲線方程為:

               (2)設(shè),

               

                由焦點半徑,  ………………8分

               

            22.(1)證明:

                所以在[0,1]上為增函數(shù),   ………………3分

               (2)解:由

               

               (3)解:由(1)與(2)得 …………9分

                設(shè)存在正整數(shù)k,使得對于任意的正整數(shù)n,都有成立,

                   ………………10分

               

                ,   ………………11分

                當(dāng),   ………………12分

                當(dāng)    ………………13分

                所在存在正整數(shù)

                都有成立.   ………………14分

             

             

             

             


            同步練習(xí)冊答案