題目列表(包括答案和解析)
(本小題滿分13分)如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線L在y軸上的截距為m(m≠0),L交橢圓于A、B兩個不同點。
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形。
(本小題滿分13分)
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的
左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢
圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點
分別 為和
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?
若存在,求的值;若不存在,請說明理由.
(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究和是否總相等?若相等,請給出證明,若不相等,說明理由.
(本小題滿分13分)
如圖,已知橢圓:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(4,0)且不與坐標軸垂直的直線交橢圓于、兩點,設點關(guān)于軸的對稱點為.
(ⅰ)求證:直線過軸上一定點,并求出此定點坐標;
(ⅱ)求△面積的取值范圍.
(本小題滿分13分)
如圖,已知橢圓的焦點為、,離心率為,過點的直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)①求直線的斜率的取值范圍;
②在直線的斜率不斷變化過程中,探究和是否總相等?若相等,請給出證明,若不相等,說明理由.
一.選擇題
1.B 2.B 3. A 4.A 5.C 6. D 7.B 8.D 9.B 10.A 11.C 12.C
二.填空題
13.(1, )∪( ,2) 14. 15. 16. ②③④
三.解答題
17.解:(1)兩學生成績績的莖葉圖如圖所示……………4分
(2)將甲、乙兩學生的成績從小到大排列為:
甲: 512 522 528 534 536 538 541 549 554 556
乙:515 521 527 531 532 536 543 548 558 559
從以上排列可知甲學生成績的中位數(shù)為……6分
乙學生成績的中位數(shù)為 …………8分
甲學生成績的平均數(shù)為:
……………10分
乙學生成績的平均數(shù)為:
……………12分
18.解:(1)∵
∴,
∴,∴ ∵ ∈(0,π) ∴ ……4分
(2)∵ ∴,即 ① …………6分
又 ∴,即 ② …………8分
由①②可得,∴ ………………………………………10分
又∴, ……………………………………12分
高三數(shù)學試題答案(文科)(共4頁)第1頁
19.(I)設是的中點,連結(jié),則四邊形為正方形,……………2分
.故,,,,即.
………………………4分
又,平面,…………………………6分
(II)證明:DC的中點即為E點, ………………………………………………8分
連D1E,BE ∴四邊形ABED是平行四邊形,
∴ADBE,又ADA1D1 A1D1 ∴四邊形A1D1EB是平行四邊形 D1E//A1B ,
∵D1E平面A1BD ∴D1E//平面A1BD!12分
20.解:(1)設這二次函數(shù)f(x)=ax2+bx (a≠0) ,則
得a=3 , b=-2, 所以 f(x)=3x2-2x. ……………………………………3分
又因為點均在函數(shù)的圖像上,所以=3n2-2n.
當n≥2時,an=Sn-Sn-1=(3n2-2n)-=6n-5.
當n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分
(2)由(1)得知==,……8分
故Tn===(1-)………10分
因此,要使(1-)<()成立的m,必須且僅須滿足
≤,即m≥10,所以滿足要求的最小正整數(shù)m為10. ………………………12分
|