14.已知:函數(shù)的定義域?yàn)锳, ,則的取值范圍是 , 查看更多

 

題目列表(包括答案和解析)

已知:函數(shù)的定義域?yàn)锳,,則a的取值范圍是________;

查看答案和解析>>

定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=1+a•(
1
2
)x+(
1
4
)x
;g(x)=
1-m•2x
1+m•2x

(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若m>0,函數(shù)g(x)在[0,1]上的上界是T(m),求T(m)的取值范圍.

查看答案和解析>>

13、已知函數(shù)y=lg(4-x)的定義域?yàn)锳,集合B={x|x<a},若P:“x∈A”是Q:“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍
a>4

查看答案和解析>>

15、已知定義域?yàn)椋∣,+∞)的函數(shù)f(x)滿足:①對(duì)任意x∈(0,+∞),恒有f(10x)=10f(x),②當(dāng)x∈(1,10]時(shí),f(x)=x-lgx,②.記區(qū)間Ik=(10k,10k+1],其中k∈Z,當(dāng)x∈Ik(k=0,1,2,3,…)時(shí).f(x)的取值構(gòu)成區(qū)間Dk,定義區(qū)間(a,b)的區(qū)間長(zhǎng)度為b-a,設(shè)區(qū)間Dk在區(qū)間Ik上的補(bǔ)集的區(qū)間長(zhǎng)度為ak,則a1=
10
,ak=
10k

查看答案和解析>>

已知下列命題:
①若f(x)為減函數(shù),則-f(x)為增函數(shù);
②若f(0)<f(4),則函數(shù)f(x)不是R上的減函數(shù);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
④設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根.
⑤若函數(shù)f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確命題的序號(hào)有
①②④
①②④
(把所有正確命題的番號(hào)都填上)

查看答案和解析>>

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

D

A

D

B

D

B

B

A

C

二、填空題(每小題5分,共20分)

  13、f(x)=2x3-12x         14、           15、2             16、0≤a≤3

三、解答題

17(10分).解:原不等式等價(jià)于-----------------------------------2分

當(dāng)--------------------------------------------4分

當(dāng)

 

-------------------------------------------------6分

 

-------------------------------------------------8分

綜上:   --------------------------------10分

18(12分). 解:(Ⅰ)

                         ----------------3分

      -----------------------------4分

  

的單調(diào)區(qū)間為     ----------------6分

(Ⅱ)由----------7分

的內(nèi)角,---------8分

          -------------------10分

     ------------12分

19(12分).解:⑴對(duì)任意的正數(shù)均有

----------2分

,                 ----------------------------------------4分

是定義在上的單調(diào)函數(shù),.     ----------6分

(2)當(dāng)時(shí),,,.----------8分

當(dāng)時(shí),,

.                 ----------------------------------------10分

為等差數(shù)列.

,.                      -----------------------------------------12分

20(12分). (1)y==  

     t=2-cosx  ∵x∈[0,) ∴t∈[1,2)         -----------------------------------------3分

     ∴y===t+ -1

     ∵y=t+ -1在t∈[1,2)上為增函數(shù)  ∴y∈[1,)     即M=[1,)           6分

  (2)由(x-a-1)(2a-x)>0即 (x-a-1)(x-2a)<0  ∵a<1∴2a<a+1  ∴N=(2a,a+1)    8分

     又∁UM=(-∞,1)∪[,+∞)                                             10分

     要使N⊆∁UM,需a+1≤1或2a≥,得 a≤0或 a≥.                       12分

21(12分).解:對(duì)函數(shù)求導(dǎo),得

----------------------------2分

解得

當(dāng)變化時(shí),、的變化情況如下表:

x

0

 

0

 

減函數(shù)

增函數(shù)

                                                ----------------------4分

所以,當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù);

           當(dāng)時(shí),的值域?yàn)?sub>   ----------------------------6分

(Ⅱ)對(duì)函數(shù)求導(dǎo),得

                                 

    因此,當(dāng)時(shí),

因此當(dāng),g(x)為減函數(shù),從而當(dāng)時(shí)有個(gè)g(x)

又g(1)=   ----------------8分

若對(duì)于任意,,存在,使得,則

[]

              ----------------------------------------10分

式得

式得

,

故:的取值范圍為                 -----------------------------------12分

22(12分). :(1)∵Sn=2an ?n  ∴Sn+1=2an+1 ?(n+1) 兩式相減得, an+1=2an+1----------------2分

     數(shù)列{an+λ}是等比數(shù)列  即: an+1+λ=2(an+λ),∴λ=1.

      ∵a1=s1=2a1-1,∴a1=1 

     ∵數(shù)列{ an+1}是首項(xiàng)為2,公比為2的等比數(shù)列          ------------------------4分

∴an+1=(a1+1)2n-1=2n,∴an=2n -1                         ------------------------6分

   (2)∵an=2n -1

     ∴bn ====-----------------10分

     ∴Tn=(-)+(-)+…+(-)=1-<1. ----------------12分

 

 

 


同步練習(xí)冊(cè)答案