已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

一、選擇題(本大題共10小題,每小題5分,共50分)

1―5 ABCDC    6―10 CDBAB

二、填空題(本大題共7小題,每小題4分,共28分)

11.    12.    13.10    14.    15.1    16.50    17.―1

三、解答題(本大題共5小題,共72分。解答應(yīng)寫出文字說明、證明過程或演算過程)

18.(本小題滿分14分)

解:(I)    ………………3分

  ………………5分

   ………………8分

   (II)由(I)可得 …………14分

19.(本小題滿分14分)

解:(I)由從而

   (II),

  ………………11分

   ………………14分

20.(本小題滿分14分)

解:(1)在D1B1上取點(diǎn)M,使D1M=1,

連接MB,MF。 ………………1分

∵D1F=1,D1M=1,

    • ∵BE//B1C1,BE=1,

      ∴MF//BE,且MF=BE

      ∴四邊形FMBE是平行四邊形!5分

      ∴EF//BM,

      又EF平面B1D1DB,

      BM平面B1D1DB,

      ∴EF//平面B1D1DB。

         (II)∵△D­1B1C1是正三角形,取B1C1中點(diǎn)G,

        <style id="1khf7"><xmp id="1khf7"><label id="1khf7"></label></xmp></style>

        連接HE,F(xiàn)E。 …………8分

        ∵ABCD―A1B1C1D1是直棱柱,

        ∴C1C⊥平面A1B1C1D1

        又D1G平面A1B1C1D1,

        ∴C1C⊥D1G,又D1G⊥B1C1,

        ∴D1G⊥平面B1BCC1,又∵FH//D1G,

        ∴FH⊥平面B1BCC1

        ∴∠FEH即為直線EF與平面B1BCC1所成角!10分

        21.(本小題滿分15分)

        解:(I)把點(diǎn)……1分

        …………3分

           (II)當(dāng)

        單調(diào)遞減區(qū)間是,

        22.(本小題滿分15分)

            解:(I)設(shè)翻折后點(diǎn)O坐標(biāo)為

          …………3分

           ………………4分

        當(dāng)   ………………5分

        綜上,以  …………6分

        說明:軌跡方程寫為不扣分。

           (II)(i)解法一:設(shè)直線

        解法二:由題意可知,曲線G的焦點(diǎn)即為……7分

           (ii)設(shè)直線

        …………13分

        故當(dāng)

         


        同步練習(xí)冊(cè)答案