⑶如圖④.若將正方形變?yōu)槿我馑倪呅?其他條件任然不變.請你猜想四邊形的面積并說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

如圖(1)(2),直線y=-x+4與兩坐標軸分別相交于A、B點,點M是線段AB上任意一點(A、B兩點除外),過M分別作MC⊥OA于點C,MD⊥OB于D.
(1)若點M的橫坐標是a,則點M的縱坐標是
-a+4
-a+4
(用含a的代數(shù)式表示)
(2)當點M在AB上運動時,你認為四邊形OCMD的周長是否發(fā)生變化?并說明理由;
(3)當點M運動到什么位置時,四邊形OCMD的面積有最大值?最大值是多少?
(4)當四邊形OCMD為正方形時,將四邊形OCMD沿著x軸的正方向移動,設(shè)平移的距離為b(0<b<4),正方形O′CMD與△AOB重疊部分的面積為S.試求S與b的函數(shù)關(guān)系式并畫出該函數(shù)的圖象.

查看答案和解析>>

24、(1)如圖,在正方形ABCD中,點E是CD的中點,點F是BC邊上一點,且∠FAE=∠EAD,求證:EF⊥AE.
(2)若將(1)中的“正方形”改為“矩形”、“菱形”和“任意平行四邊形”,其它條件不變,則是否仍有“EF⊥AE”的結(jié)論.若結(jié)論都成立,選取一種畫出圖形,并簡單說明理由,若不成立,也請畫圖說明理由.

查看答案和解析>>

(1)如圖,在正方形ABCD中,點E是CD的中點,點F是BC邊上一點,且∠FAE=∠EAD,求證:EF⊥AE.
(2)若將(1)中的“正方形”改為“矩形”、“菱形”和“任意平行四邊形”,其它條件不變,則是否仍有“EF⊥AE”的結(jié)論.若結(jié)論都成立,選取一種畫出圖形,并簡單說明理由,若不成立,也請畫圖說明理由.

查看答案和解析>>

(1)閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b=(
a
)2+(
b
)2
=(
a
)2+(
b
)2
-2
ab
+2
ab
=(
a
-
b
)2
+2
ab
,
又∵(
a
-
b
)2
≥0,∴(
a
-
b
)2
+2
ab
≥0+2
ab
,即a+b≥2
ab

根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2
ab
(a、b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,當且僅當a、b滿足
 
時,a+b有最小值2
p

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥2
ab
成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)y=
4
x
的圖象上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.
精英家教網(wǎng)

查看答案和解析>>


同步練習冊答案