題目列表(包括答案和解析)
((本小題共13分)
若數(shù)列滿足,數(shù)列為數(shù)列,記=.
(Ⅰ)寫出一個滿足,且〉0的數(shù)列;
(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;
(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5)
(Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結論得證。
已知函數(shù).()
(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調遞增,
則在區(qū)間上恒成立. …………3分
即,而當時,,故. …………5分
所以. …………6分
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點,,
當,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當,即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當時,函數(shù)的圖象恒在直線下方.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com