(2)證明:∵ DC平面ABC ,平面ABC ∴. --------------------6分 查看更多

 

題目列表(包括答案和解析)

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求二面角B﹣AP﹣D的余弦值.

查看答案和解析>>

如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
(I)證明:DC⊥平面APC;
(II)求棱錐A-PBC的高.

查看答案和解析>>

(2013•廣東)如圖1,在邊長(zhǎng)為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=
2
2

(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當(dāng)AD=
2
3
時(shí),求三棱錐F-DEG的體積VF-DEG

查看答案和解析>>


同步練習(xí)冊(cè)答案