解:(1)成立. 如圖.把繞點順時針.得到. 則可證得三點共線 證明過程中. 證得: 證得: (2) 查看更多

 

題目列表(包括答案和解析)

如圖,已知AB=CD,AD=CB,點E,F(xiàn)分別是AB,CD的中點,請?zhí)羁照f明下列判斷成立的理由:(1)∠A=∠C;(2)DE=BF.
精英家教網(wǎng)解:(1)連接DB
在△ADB和△CBD中
AB=CD(已知)
AD=CB(已知)
BD=DB(公共邊)

∴△ADB≌△CBD(
 

∴∠A=∠C(
 

(2)∵△ADB≌△CBD(已證)
∴DE=BF(
 

查看答案和解析>>

18、在△ABD和△ACE中,有下列四個論斷:①AB=AC;②∠B=∠C;③∠BAC=∠EAD;④AD=AE.請以其中三個論斷作為條件,余下一個論斷作為結論(用序號?的形式)編擬一個由三個條件能推出一個結論成立的題目,并說明成立的理由.
解:選擇的三個條件是:
①③④
;成立的結論是:
.理由如下:

查看答案和解析>>

閱讀理解:小明計算了a5÷a3(a≠0),其計算過程如下
解:原式=
a5
a3
=
a•a•a•a•a
a•a•a
=a•a
=a2

看了小明做的過程后,請你仿照小明的方法說明等式a-3=
1
a3
(a≠0)
成立.

查看答案和解析>>

根據(jù)所給的基本材料,請你進行適當?shù)奶幚�,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發(fā)沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數(shù)關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

(1)等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D,過P作PE⊥AC于點E.設P點運動時間為t.
①當點P在線段AB上運動時,線段DE的長度是否改變?若不改變,求出DE的值;若改變,請說明理由.
下面給出一種解題的思路,你可以按這一思路解題,也可以選擇另外的方法解題.
解:過Q作QF⊥直線AC于點M
∵PE⊥AC于點E,QF⊥直線AC于點M
∴∠AEP=∠F=90°
(下面請你完成余下的解題過程)
②當點P在線段AB的延長線上運動時,(1)中的結論是否還成立?請在圖2畫出圖形并說明理由.
(2)若將(1)中的“腰長為10cm的等腰直角△ABC”改為“邊長為a的等邊△ABC”時(其余條件不變),則線段DE的長度又如何?(直接寫出答案,不需要解題過程)
(3)若將(2)中的“等邊△ABC”改為“△ABC”(其余條件不變),請你做出猜想:當△ABC滿足
∠A=∠ACB
∠A=∠ACB
條件時,(2)中的結論仍然成立.(直接寫出答案,不需要解題過程)

查看答案和解析>>


同步練習冊答案