已知 的單調(diào)遞增區(qū)間, (2) 若時.f(x)的最大值為4.求的值 [解](1)由 使 ,解得, ,因此f(x)在上的最大值為+3.使+3=4, =1. 查看更多

 

題目列表(包括答案和解析)

已知

(Ⅰ)若x∈R求f(x)的單調(diào)遞增區(qū)間;

(Ⅱ)若時,f(x)的最大值為4,求a的值;

(Ⅲ)在(Ⅱ)的條件下,求滿足f(x)=1且x∈[-π,π]的x的集合.

查看答案和解析>>

已知函數(shù)f(x)=
13
x3-(a+1)x2+4ax
,((a∈R)).
(Ⅰ)若函數(shù)y=f(x)在區(qū)間(-∞,0)上單調(diào)遞增,在區(qū)間(0,1)上單調(diào)遞減,求實數(shù)a的值;
(Ⅱ)若常數(shù)a<1,求函數(shù)f(x)在區(qū)間[0,2]上的最大值;
(Ⅲ)已知a=0,求證:對任意的m、n,當(dāng)m<n≤1時,總存在實數(shù)t∈(m,n),使不等式f(m)+f(n)<2f(t)成立.

查看答案和解析>>

已知函數(shù)f(x)=
13
x3+bx2+cx,b,c∈R
,且函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增,在區(qū)間(1,3)上單調(diào)遞減.
(Ⅰ)若b=-2,求c的值;
(Ⅱ)求證:c≥3.

查看答案和解析>>

已知函數(shù)f(x)=
mx3
3
+ax2+(1-b2)x
,m,a,b∈R.
(Ⅰ)求函數(shù)f(x)的導(dǎo)函數(shù)f′(x);
(Ⅱ)當(dāng)m=1時,若函數(shù)f(x)是R上的增函數(shù),求z=a+b的最小值;
(Ⅲ)當(dāng)a=1,b=
2
時,函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=(a-
12
)x2+Inx(a∈R)

(1)當(dāng)a=0時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若?x∈[1,3],使f(x)<(x+1)lnx成立,求實數(shù)a的取值范圍;
(3)若函數(shù)f(x)的圖象在區(qū)間(1,+∞)內(nèi)恒在直線y=2ax下方,求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案