3.在實(shí)數(shù)范圍內(nèi).方程 無(wú)解.為使開方運(yùn)算在負(fù)數(shù)范圍內(nèi)可以進(jìn)行.我們規(guī)定 .定義一種新數(shù):并規(guī)定實(shí)數(shù)范圍內(nèi)的所有運(yùn)算法則對(duì)于新數(shù)仍然成立.例如: .若, 則,依據(jù)上述規(guī)定. (1) 若,試求的值, (2) 若,試求的值. 中考題改編 [目的]考查數(shù)和式的運(yùn)算及對(duì)知識(shí)遷移運(yùn)用能力 查看更多

 

題目列表(包括答案和解析)

在實(shí)數(shù)范圍內(nèi),方程x2=-1無(wú)解,為使開方運(yùn)算在負(fù)數(shù)范圍內(nèi)可以進(jìn)行,我們規(guī)定i2=-1.定義一種新數(shù):Z=a+bi({a、b為實(shí)數(shù)}),并規(guī)定實(shí)數(shù)范圍內(nèi)的所有運(yùn)算法則對(duì)于新數(shù)Z=a+bi?({a、b為實(shí)數(shù)});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若Z=-
1
2
+
3
2
i
,則Z2=(-
1
2
+
3
2
i)2=(-
1
2
)2+2(-
1
2
)(
3
2
i)+(
3
2
i)2=-
1
2
-
3
2
i
,依據(jù)上述規(guī)定,
(1)若Z=-
1
2
+
3
2
i
,試求Z3的值;
(2)若Z=-
1
2
+
3
2
i
,試求z2008的值.

查看答案和解析>>

在實(shí)數(shù)范圍內(nèi),方程x2=-1無(wú)解,為使開方運(yùn)算在負(fù)數(shù)范圍內(nèi)可以進(jìn)行,我們規(guī)定i2=-1.定義一種新數(shù):Z=a+bi({a、b為實(shí)數(shù)}),并規(guī)定實(shí)數(shù)范圍內(nèi)的所有運(yùn)算法則對(duì)于新數(shù)Z=a+bi?({a、b為實(shí)數(shù)});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若數(shù)學(xué)公式,則數(shù)學(xué)公式,依據(jù)上述規(guī)定,
(1)若數(shù)學(xué)公式,試求Z3的值;
(2)若數(shù)學(xué)公式,試求z2008的值.

查看答案和解析>>

在實(shí)數(shù)范圍內(nèi),方程x2=-1無(wú)解,為使開方運(yùn)算在負(fù)數(shù)范圍內(nèi)可以進(jìn)行,我們規(guī)定i2=-1.定義一種新數(shù):Z=a+bi({a、b為實(shí)數(shù)}),并規(guī)定實(shí)數(shù)范圍內(nèi)的所有運(yùn)算法則對(duì)于新數(shù)Z=a+bi?({a、b為實(shí)數(shù)});仍然成立.例如:Z2=(a+bi)2=(a+bi)•(a+bi)=a2+2a•bi+(bi)2=a2-b2+2abi,若,則,依據(jù)上述規(guī)定,
(1)若,試求Z3的值;
(2)若,試求z2008的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案