題目列表(包括答案和解析)
通過理論分析可得出彈簧的彈性勢能公式Ep=kl2(式中k為彈簧的勁度系數(shù),l為彈簧長度的變化量).為驗證這一結(jié)論,A、B兩位同學設計了以下的實驗:
①兩位同學首先都進行了如圖7甲所示的實驗:將一根輕質(zhì)彈簧豎直掛起,在彈簧的另一端掛上一個已知質(zhì)量為m的小鐵球,穩(wěn)定后測得彈簧伸長d.②A同學完成步驟①后,接著進行了如圖乙所示的實驗:將這根彈簧豎直地固定在水平桌面上,并把小鐵球放在彈簧上,然后豎直地套上一根帶有插銷孔的長透明塑料管,利用插銷壓縮彈簧.拔掉插銷時,彈簧對小球做功,使小球彈起,測得彈簧的壓縮量l和小鐵球上升的最大高度H.③B同學完成步驟①后,接著進行了如圖丙所示的實驗:將這根彈簧放在水平桌面上,一端固定在豎直墻上,另一端被小鐵球壓縮,測得壓縮量為l,釋放彈簧后,小鐵球從高為h的桌面上水平拋出,拋出的水平距離為L.
(1)A、B兩位同學進行圖甲所示的實驗目的是為了確定什么物理量?請用m、d、g表示所求的物理量____________________.
(2)如果Ep=kl2成立,
A同學測出的物理量l與d、H的關系式是:l=____________.
B同學測出的物理量l與d、h、L的關系式是:l=__________.
(3)試分別分析兩位同學實驗誤差的主要來源
________________________________________________________________________________________________________________________________________________.
實驗題(19分):
(1)某同學用螺旋測微器測量某一導線的直徑,測量結(jié)果如下圖甲所示,則該導線的直徑為 mm. 該同學再用主尺最小分度為1mm,游標上有20個分度的卡尺測量某金屬球的直徑,測量結(jié)果如下圖乙所示,則該金屬球的直徑為 cm.
(2)在探究合力的方法時,先將橡皮條的一端固定在水平木板上,另一端系上帶有繩套的兩根細繩.實驗時,需要兩次拉伸橡皮條,一次是通過兩細繩用兩個彈簧秤互成角度地拉橡皮條,另一次是用一個彈簧秤通過細繩拉橡皮條.
①實驗對兩次拉伸橡皮條的要求中,下列哪些說法是正確的
A.將橡皮條拉伸相同長度即可
B.將橡皮條沿相同方向拉到相同長度
C.將彈簧秤都拉伸到相同刻度
D.將橡皮條和繩的結(jié)點拉到相同位置
②同學們在操作過程中有如下議論,其中對減小實驗誤差有益的說法是
A.兩細繩必須等長
B.彈簧秤、細繩、橡皮條都應與木板平行
C.用兩彈簧秤同時拉細繩時兩彈簧秤示數(shù)之差應盡可能大
D.拉橡皮條的細繩要長些,標記同一細繩方向的兩點要遠些
(3)在“探究彈簧彈力大小與伸長量的關系”實驗中,甲、乙兩位同學選用不同的橡皮繩代替彈簧,為測量橡皮繩的勁度系數(shù),他們在橡皮繩下端面依次逐個掛下鉤碼(每個鉤碼的質(zhì)量均為m=0.1kg,取g=10m/s2),并記錄繩下端的坐標X i加(下標i表示掛在繩下端鉤碼個數(shù)).然后逐個拿下鉤碼,同樣記錄繩下端的坐標Xi減,繩下端面坐標的值Xi=(Xi加+X i減)/2的數(shù)據(jù)如下表:
掛在橡皮繩下端的鉤碼個數(shù) | 橡皮繩下端的坐標(X/mm) | |
甲 | 乙 | |
1 | 216.5 | 216.5 |
2 | 246.7 | 232. |
3 | 284.0 | 246.5 |
4 | 335.0 | 264.2 |
5 | 394.5 | 281.3 |
6 | 462.0 | 301.0 |
①同一橡皮繩的X加 X減(大于或小于);
② 同學的數(shù)據(jù)更符合實驗要求(甲或乙);
③某同學選擇一組數(shù)據(jù)用作出拉力F與該變量(Xn-X1)的圖像,則由圖像可得該橡皮繩的勁度系數(shù)k=____________N/m;
④為了更好的測量勁度系數(shù),在選用鉤碼時需考慮的因素有哪些(寫一種即可)?
實驗題(19分):
(1)某同學用螺旋測微器測量某一導線的直徑,測量結(jié)果如下圖甲所示,則該導線的直徑為 mm. 該同學再用主尺最小分度為1mm,游標上有20個分度的卡尺測量某金屬球的直徑,測量結(jié)果如下圖乙所示,則該金屬球的直徑為 cm.
(2)在探究合力的方法時,先將橡皮條的一端固定在水平木板上,另一端系上帶有繩套的兩根細繩.實驗時,需要兩次拉伸橡皮條,一次是通過兩細繩用兩個彈簧秤互成角度地拉橡皮條,另一次是用一個彈簧秤通過細繩拉橡皮條.
①實驗對兩次拉伸橡皮條的要求中,下列哪些說法是正確的
A.將橡皮條拉伸相同長度即可
B.將橡皮條沿相同方向拉到相同長度
C.將彈簧秤都拉伸到相同刻度
D.將橡皮條和繩的結(jié)點拉到相同位置
②同學們在操作過程中有如下議論,其中對減小實驗誤差有益的說法是
A.兩細繩必須等長
B.彈簧秤、細繩、橡皮條都應與木板平行
C.用兩彈簧秤同時拉細繩時兩彈簧秤示數(shù)之差應盡可能大
D.拉橡皮條的細繩要長些,標記同一細繩方向的兩點要遠些
(3)在“探究彈簧彈力大小與伸長量的關系”實驗中,甲、乙兩位同學選用不同的橡皮繩代替彈簧,為測量橡皮繩的勁度系數(shù),他們在橡皮繩下端面依次逐個掛下鉤碼(每個鉤碼的質(zhì)量均為m=0.1kg,取g=10m/s2),并記錄繩下端的坐標X i加(下標i表示掛在繩下端鉤碼個數(shù)).然后逐個拿下鉤碼,同樣記錄繩下端的坐標Xi減,繩下端面坐標的值Xi=(Xi加+X i減)/2的數(shù)據(jù)如下表:
掛在橡皮繩下端的鉤碼個數(shù) |
橡皮繩下端的坐標(X/mm) |
|
甲 |
乙 |
|
1 |
216.5 |
216.5 |
2 |
246.7 |
232. |
3 |
284.0 |
246.5 |
4 |
335.0 |
264.2 |
5 |
394.5 |
281.3 |
6 |
462.0 |
301.0 |
①同一橡皮繩的X加 X減(大于或小于);
② 同學的數(shù)據(jù)更符合實驗要求(甲或乙);
③某同學選擇一組數(shù)據(jù)用作出拉力F與該變量(Xn-X1)的圖像,則由圖像可得該橡皮繩的勁度系數(shù)k=____________N/m;
④為了更好的測量勁度系數(shù),在選用鉤碼時需考慮的因素有哪些(寫一種即可)?
實驗題:
(1)某同學用螺旋測微器測量某一導線的直徑,測量結(jié)果如下圖甲所示,則該導線的直徑為 mm. 該同學再用主尺最小分度為1mm,游標上有20個分度的卡尺測量某金屬球的直徑,測量結(jié)果如下圖乙所示,則該金屬球的直徑為 cm.
(2)在探究合力的方法時,先將橡皮條的一端固定在水平木板上,另一端系上帶有繩套的兩根細繩.實驗時,需要兩次拉伸橡皮條,一次是通過兩細繩用兩個彈簧秤互成角度地拉橡皮條,另一次是用一個彈簧秤通過細繩拉橡皮條.
①實驗對兩次拉伸橡皮條的要求中,下列哪些說法是正確的
A.將橡皮條拉伸相同長度即可
B.將橡皮條沿相同方向拉到相同長度
C.將彈簧秤都拉伸到相同刻度
D.將橡皮條和繩的結(jié)點拉到相同位置
②同學們在操作過程中有如下議論,其中對減小實驗誤差有益的說法是
A.兩細繩必須等長
B.彈簧秤、細繩、橡皮條都應與木板平行
C.用兩彈簧秤同時拉細繩時兩彈簧秤示數(shù)之差應盡可能大
D.拉橡皮條的細繩要長些,標記同一細繩方向的兩點要遠些
(3)在“探究彈簧彈力大小與伸長量的關系”實驗中,甲、乙兩位同學選用不同的橡皮繩代替彈簧,為測量橡皮繩的勁度系數(shù),他們在橡皮繩下端面依次逐個掛下鉤碼(每個鉤碼的質(zhì)量均為m=0.1kg,取g=10m/s2),并記錄繩下端的坐標X i加(下標i表示掛在繩下端鉤碼個數(shù)).然后逐個拿下鉤碼,同樣記錄繩下端的坐標Xi減,繩下端面坐標的值Xi=(Xi加+X i減)/2的數(shù)據(jù)如下表:
掛在橡皮繩下端的鉤碼個數(shù) | 橡皮繩下端的坐標(X/mm) | |
甲 | 乙 | |
1 | 216.5 | 216.5 |
2 | 246.7 | 232. |
3 | 284.0 | 246.5 |
4 | 335.0 | 264.2 |
5 | 394.5 | 281.3 |
6 | 462.0 | 301.0 |
①同一橡皮繩的X加 X減(大于或小于);
② 同學的數(shù)據(jù)更符合實驗要求(甲或乙);
③某同學選擇一組數(shù)據(jù)用作出拉力F與該變量(Xn-X1)的圖像,則由圖像可得該橡皮繩的勁度系數(shù)k=____________N/m;
④為了更好的測量勁度系數(shù),在選用鉤碼時需考慮的因素有哪些(寫一種即可)?
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大。篶 = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大。篴 = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。
解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大。篶 = absinα,其中α為和的夾角。意義:的大小對應由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質(zhì)心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關系比較簡單。
答案:距棒的左端L/4處。
(學生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉(zhuǎn)動平衡
1、特征:物體無轉(zhuǎn)動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變。徊蛔。
(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習三力共點的應用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。
2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應用整體法時應注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。
三、應用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學生留下深刻印象。
法一,正交分解。(學生分析受力→列方程→得結(jié)果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com