8.定義在區(qū)間滿足2f.則f(x)的解析式為 . [解析] ∵對任意的x∈. 由2f① 得2f② ①×2+②消去f+lg ∴f. [答案] f 查看更多

 

題目列表(包括答案和解析)

已知定義在區(qū)間(0,+∞)上的函數f(x)滿足f()=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

已知定義在區(qū)間(0,+∞)上的函數f(x)滿足f=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

已知定義在區(qū)間(0,+∞)上的函數f(x)滿足f()=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

已知定義在區(qū)間(0,+∞)上的函數f(x)滿足f=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

已知定義在區(qū)間(0,+∞)上的函數f(x)滿足f(+f(x2)=f(x1),且當x>1時,f(x)<0.

(1)求f(1)的值;

(2)判斷f(x)的單調性并加以證明;

(3)若f(3)=-1,解不等式f(|x|)>-2.

查看答案和解析>>


同步練習冊答案