21. 給定函數且). (1)求函數的定義域, (2)當時.求的取值范圍, (3)當時.判斷函數的單調性.并證明你的結論. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=
1a-x
-1
(其中a為常數,x≠a).利用函數y=f(x)構造一個數列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數列的過程繼續(xù)下去;如果xi不在定義域中,那么構造數列的過程就停止.
(Ⅰ)當a=1且x1=-1時,求數列{xn}的通項公式;
(Ⅱ)如果可以用上述方法構造出一個常數列,求a的取值范圍;
(Ⅲ)是否存在實數a,使得取定義域中的任一實數值作為x1,都可用上述方法構造出一個無窮數列{xn}?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

已知函數f(x),如果存在給定的實數對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“S-函數”.
(1)判斷函數f1(x)=x,f2(x)=3x是否是“S-函數”;
(2)若f3(x)=tanx是一個“S-函數”,求出所有滿足條件的有序實數對(a,b);
(3)若定義域為R的函數f(x)是“S-函數”,且存在滿足條件的有序實數對(0,1)和(1,4),當x∈[0,1]時,f(x)的值域為[1,2],求當x∈[-2012,2012]時函數f(x)的值域.

查看答案和解析>>

已知函數f(x)=數學公式(t為常數).
(1)當t=1時,在圖中的直角坐標系內作出函數y=f(x)的大致圖象,并指出該函數所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數列{an}的單調性并由此寫出該數列中最大項和最小項(可用[t]來表示不超過t的最大整數).
(3)利用函數y=f(x)構造一個數列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數列的過程繼續(xù)下去;若xi不在定義域中,則構造數列的過程停止.若可用上述方法構造出一個常數列{xn},求t的取值范圍.

查看答案和解析>>

已知函數f(x)=數學公式(t為常數).
(1)當t=1時,在圖中的直角坐標系內作出函數y=f(x)的大致圖象,并指出該函數所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數列{an}的單調性并由此寫出該數列中最大項和最小項(可用[t]來表示不超過t的最大整數).
(3)利用函數y=f(x)構造一個數列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數列的過程繼續(xù)下去;若xi不在定義域中,則構造數列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數列{xn},求實數t的值.

查看答案和解析>>

已知函數f(x),如果存在給定的實數對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱f(x)為“S-函數”.
(1)判斷函數f1(x)=x,f2(x)=3x是否是“S-函數”;
(2)若f3(x)=tanx是一個“S-函數”,求出所有滿足條件的有序實數對(a,b);
(3)若定義域為R的函數f(x)是“S-函數”,且存在滿足條件的有序實數對(0,1)和(1,4),當x∈[0,1]時,f(x)的值域為[1,2],求當x∈[-2012,2012]時函數f(x)的值域.

查看答案和解析>>


同步練習冊答案