5.在正四面體P―ABC中.D.E.F分別是AB.BC.CA的中點.下面四個結(jié)論中不成立的是 A.BC//平面PDF B.DF⊥平面PAE C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC 查看更多

 

題目列表(包括答案和解析)

在正四面體P—ABC中,D、E、F分別是AB、BC、CA的中點,下面四個結(jié)論中不成立的是(    )

A.BC∥平面PDF                                B.DF⊥平面PAE

C.平面PDF⊥平面ABC                        D.平面PAE⊥平面ABC

查看答案和解析>>

在正四面體PABC中,D、EF分別是AB、BC、CA的中點,下列四個結(jié)論中不成立的是(     )

  A.BC//平面PDF                     B.DF平面PAE

C.平面PDF平面ABC             D.平面PAE平面ABC

 

查看答案和解析>>

在正四面體PABC中,D、E、F分別是AB、BC、CA的中點,下列四個結(jié)論中不成立的是(     )

  A.BC//平面PDF                     B.DF平面PAE

C.平面PDF平面ABC             D.平面PAE平面ABC

 

查看答案和解析>>

在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,下面四個結(jié)論中不

正確的是(    )

A. BC//平面PDF         B.  DF⊥平面PAE

C. 平面PDF⊥平面ABC   D.  平面PAE⊥平面ABC

 

查看答案和解析>>

在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,下面四個結(jié)論中不成立的是                  

A.BC平面PDF                                           B.DF⊥平面PAE    

C.平面PDF⊥平面ABC  D.平面PAE⊥平面ABC

查看答案和解析>>

一、選擇題

<span id="kzub6"></span>

    20080422

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)……………………3分

    ……………………6分

    (2)因為

    ………………9分

    ……………………12分

    文本框:  18.方法一:

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點,PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2,

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點E,連結(jié)DE、PE,

    過點D作AB的平行線交BC于點F,以D為

    <span id="kzub6"><del id="kzub6"></del></span>
  1. <label id="kzub6"></label>

    DP為z軸,建立如圖所示的空間直角坐標系.

    則D(0,0,0),P(0,0,),

    E(),B=(

    設(shè)上平面PAB的一個法向量,

    則由

    這時,……………………6分

    顯然,是平面ABC的一個法向量.

    ∴二面角P―AB―C的大小是……………………8分

    (3)解:

    設(shè)平面PBC的一個法向量,

    是平面PBC的一個法向量……………………10分

    ∴點E到平面PBC的距離為………………12分

    19.解:(1)由題設(shè),當(dāng)價格上漲x%時,銷售總金額為:

       (2)

    ……………………3分

    當(dāng)

    當(dāng)x=50時,

    即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

    (2)由(1)

    如果上漲價格能使銷假售總金額增加,

    則有……………………8分

    即x>0時,

    注意到m>0

      ∴   ∴

    ∴m的取值范圍是(0,1)…………………………12分

    20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

    當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

    當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

    由已知可得………5分

    解得無意義.

    因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

    (2)由已知可設(shè)直線l的方程為……………………8分

    則AB所在直線為……………………9分

    代入拋物線方程………………①

    的中點為

    代入直線l的方程得:………………10分

    又∵對于①式有:

    解得m>-1,

    l在y軸上截距的取值范圍為(3,+)……………………12分

    21.解:(1)在………………1分

    當(dāng)兩式相減得:

    整理得:……………………3分

    當(dāng)時,,滿足上式,

    (2)由(1)知

    ………………8分

    ……………………10分

    …………………………12分

    22.解:(1)…………………………1分

    是R上的增函數(shù),故在R上恒成立,

    在R上恒成立,……………………2分

    …………3分

    故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減。…………………………5分

    ∴當(dāng)

    的最小值………………6分

    亦是R上的增函數(shù)。

    故知a的取值范圍是……………………7分

    (2)……………………8分

    ①當(dāng)a=0時,上單調(diào)遞增;…………10分

    可知

    ②當(dāng)

    即函數(shù)上單調(diào)遞增;………………12分

    ③當(dāng)時,有,

    即函數(shù)上單調(diào)遞增!14分

     


    同步練習(xí)冊答案
    1. <span id="kzub6"><del id="kzub6"><p id="kzub6"></p></del></span>
    2. <li id="kzub6"></li>