已知橢圓C:+=1的離心率為.過右焦點F且斜率為1的直線交橢圓C于A.B兩點.N為弦AB的中點.(1)求直線ON的斜率KON , 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
已知橢圓C:(常數(shù)),P是曲線C上的動點,M是曲線C的右
頂點,定點A的坐標(biāo)為(2,0).
(1)若M與A重合,求曲線C的焦點坐標(biāo).
(2)若,求|PA|的最大值與最小值.
(3)若|PA|最小值為|MA|,求實數(shù)的取值范圍.

查看答案和解析>>

(本小題滿分12分)

已知橢圓C:(a>b>0)的右焦點為F(1,0),離心率為,P為左頂點。

(1)求橢圓C的方程;

(2)設(shè)過點F的直線交橢圓C于A,B兩點,若△PAB的面積為,求直線AB的方程。

 

查看答案和解析>>

(本小題滿分12分)已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,設(shè)過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率k的取值范圍;

(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設(shè)原點到四邊形一邊的距離為,試求滿足的條件.

 

查看答案和解析>>

(本小題滿分12分)

已知橢圓C:的短軸長為,且斜率為的直線過橢圓C的焦點及點。

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知一直線過橢圓C的左焦點,交橢圓于點P、Q,

(。┤魸M足為坐標(biāo)原點),求的面積;

(ⅱ)若直線與兩坐標(biāo)軸都不垂直,點M在軸上,且使的一條角平分線,則稱點M為橢圓C的“左特征點”,求橢圓C的左特征點。

 

查看答案和解析>>

(本小題滿分12分)

已知橢圓C的離心率為,且過點Q(1,).

   (1) 求橢圓C的方程;

    (2) 若過點M(2,0)的直線與橢圓C相交于A,B兩點,設(shè)P點在直線

上,且滿足 (O為坐標(biāo)原點),求實數(shù)t的最小值.

 

查看答案和解析>>

一、選擇題

 1-6  C  A  B  B   B   D    7-12   B  C  B  B  B  C

二、填空 

 13.  4     14.      15. 2    16.

三、解答題

17.(1)解:由

       有    ……6分

,  ……8分

由余弦定理

      當(dāng)……12分

∴PB∥平面EFG. ………………………………3分

   (2)解:取BC的中點M,連結(jié)GM、AM、EM,則GM//BD,

所成的角.………………4分

     在Rt△MAE中, ,

     同理,…………………………5分

又GM=

∴在△MGE中,

………………6分

故異面直線EG與BD所成的角為arccos,………………………………7分

   (3)假設(shè)在線段CD上存在一點Q滿足題設(shè)條件,

∵ABCD是正方形,△PAD是直角三角形,且PA=AD=2,

∴AD⊥AB,AD⊥PA.

又AB∩PA=A,

∴AD⊥平面PAB. ……………………………………8分

又∵E,F(xiàn)分別是PA,PD中點,

∴EF∥AD,∴EF⊥平面PAB.

又EF面EFQ,

∴面EFQ⊥面PAB. …………………………………9分

過A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點A到平面EFQ的距離. ……………………………………………10分

設(shè),

    在, …………………………11分

    解得

    故存在點Q,當(dāng)CQ=時,點A到平面EFQ的距離為0.8. ……………………… 12分

解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,

則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

             (1)證明:

               …………………………1分

              設(shè),

              即,

             

               ……………2分

             

              ∴PB∥平面EFG. …………………………………………………………………… 3分

             (2)解:∵,…………………………………………4分

              ,……………………… 6分

           

          20.(本小題滿分12分)

          解:(1)數(shù)列{an}的前n項和,

                                                …………2分

          ,

                                     …………3分

          是正項等比數(shù)列,

           

          ,                                               …………4分

          公比,                                                                                    …………5分

          數(shù)列                                  …………6分

             (2)解法一:,

                                  …………8分

          ,

          當(dāng),                                      …………10分

          故存在正整數(shù)M,使得對一切M的最小值為2…………12分

             (2)解法二:,

          ,         …………8分

          函數(shù)…………10分

          對于

          故存在正整數(shù)M,使得對一切恒成立,M的最小值為2…………12

          21.解:  1)設(shè)橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

          易知右焦點F的坐標(biāo)為(),

          據(jù)題意有AB所在的直線方程為:   ②                     ………3分

          由①,②有:         ③

          設(shè),弦AB的中點,由③及韋達(dá)定理有:

           

          所以,即為所求。                                    ………5分

          2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立。設(shè),由1)中各點的坐標(biāo)有:

          ,所以

          。                                   ………7分

          又點在橢圓C上,所以有整理為。           ④

          由③有:。所以

             ⑤

          又A?B在橢圓上,故有                ⑥

          將⑤,⑥代入④可得:。                                ………11分

          對于橢圓上的每一個點,總存在一對實數(shù),使等式成立,而

          在直角坐標(biāo)系中,取點P(),設(shè)以x軸正半軸為始邊,以射線OP為終邊的角為,顯然

          也就是:對于橢圓C上任意一點M ,總存在角∈R)使等式:=cos+sin成立。                                                 ………12分

           

          22.  …1分

          上無極值點      ……………………………2分

          當(dāng)時,令,隨x的變化情況如下表:

          x

          0

          遞增

          極大值

          遞減

          從上表可以看出,當(dāng)時,有唯一的極大值點

          (2)解:當(dāng)時,處取得極大值

          此極大值也是最大值。

          要使恒成立,只需

          的取值范圍是     …………………………………………………8分

          (3)證明:令p=1,由(2)知:

                  …………………………………………………………10分

                   ……………………………………………14分


          同步練習(xí)冊答案