(3)若. 查看更多

 

題目列表(包括答案和解析)

11、若α,β為第二象限的角,且sinα>sinβ則(  )

查看答案和解析>>

α,β∈(0,
π
2
)
,cos(α-
β
2
)=
3
2
,sin(
α
2
-β )=-
1
2
,則cos(α+β)的值等于( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

若α,β均為銳角,且cos(α+β)=sin(α-β),則tana的值為( 。
A、2
B、
3
C、1
D、
3
3

查看答案和解析>>

6、若α,β,γ為不同的平面,m,n,l為不同的直線,則m⊥β的一個(gè)充分條件是(  )

查看答案和解析>>

α
,
β
是一組基底,向量
γ
=x•
α
+y•
β
(x,y∈R),則稱(x,y)為向量
γ
在基底
α
,
β
下的坐標(biāo),現(xiàn)已知向量
a
在基底
p
=(1,-1),
q
=(2,1)下的坐標(biāo)為(-2,2),則
a
在另一組基底
m
=(-1,1),
n
=(1,2)下的坐標(biāo)為(  )
A、(2,0)
B、(0,-2)
C、(-2,0)
D、(0,2)

查看答案和解析>>

 

一、

DACCA  BDB

二、

9.16    10.2009      11.      12.     

13.    14.3        15.②③

三、

16.解:(1)由余弦定理得:

是以角C為直角的直角三角形.……………………6分

(2)

………………①

………………②

②÷①得

……………………12分

17.解:(1)因?yàn)?sub>……………………………………(2分)

       ……………………………………………………(4分)

      

所以線路信息通暢的概率為!6分)

   (2)的所有可能取值為4,5,6,7,8。

      

       ……………………………………………………………(9分)

       ∴的分布列為

4

5

6

7

8

P

       …………………………………………………………………………………………(10分)

∴E=4×+5×+6×+7×+8×=6!12分)

18.解:解法一:(1)證明:連結(jié)OC,

ABD為等邊三角形,O為BD的中點(diǎn),∴AO

垂直BD!1分)

       ∴ AO=CO=!2分)

       在AOC中,AC=,∴AO2+CO2=AC2,

∴∠AOC=900,即AO⊥OC。

       ∴BDOC=O,∴AO⊥平面BCD!3分)

   (2)過(guò)O作OE垂直BC于E,連結(jié)AE,

    ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。

    ∴AE⊥BC。

    ∠AEO為二面角A―BC―D的平面角。………………………………………(7分)

       在RtAEO中,AO=,OE=,

,

       ∴∠AEO=arctan2。

       二面角A―BC―D的大小為arctan2。

       (3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,

。

       在ACD中,AD=CD=2,AC=

。

。

       ∴點(diǎn)O到平面ACD的距離為!12分)

解法二:(1)同解法一。

       (2)以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

       則O(0,0,0),A(0,0,),B(1,0,0),C(0,,0),D(-1,0,0)

       ∵AO⊥平面DCD,

       ∴平面BCD的法向量=(0,0,)!5分)

             ,

             由。設(shè)夾角為,

             則

             ∴二面角A―BC―D的大小為arccos。…………………………………………(8分)

         (3)解:設(shè)平面ACD的法向量為

      !11分)

      設(shè)夾角為,則

      設(shè)O到平面ACD的距離為

      ,

      ∴O到平面ACD的距離為!12分)19.解:(1).

      …共線,該直線過(guò)點(diǎn)P1(a,a),

      斜率為……………………3分

      當(dāng)時(shí),An是一個(gè)三角形與一個(gè)梯形面積之和(如上圖所示),梯形面積是

      于是

      …………………………7分

      (2)結(jié)合圖象,當(dāng)

      ,……………………10分

      而當(dāng)

      故當(dāng)1<a>2時(shí),存在正整數(shù)n,使得……………………13分

      20.解:(1)

      設(shè)橢圓C的標(biāo)準(zhǔn)方程為,

      為正三角形,

      a=2b,結(jié)合

      ∴所求為……………………2分

      (2)設(shè)P(x,y)M(),N(),

      直線l的方程為得,

      ……………………4分

      ………………6分

      且滿足上述方程,

      ………………7分

      (3)由(2)得, 

      …………………………9分

      ……………………10分

      設(shè)

      面積的最大值為…………………………13分

      21.解:(1)由

      即可求得……………………3分

      (2)當(dāng)>0,

      不等式…(5分)

       

      由于

      ……………………7分

      當(dāng)

      當(dāng)

      當(dāng)

      于是由;………………9分

      (3)由(2)知,

      在上式中分別令x=再三式作和即得

      所以有……………………13分

       

       


      同步練習(xí)冊(cè)答案