題目列表(包括答案和解析)
π |
2 |
β |
2 |
| ||
2 |
α |
2 |
1 |
2 |
A、-
| ||||
B、-
| ||||
C、
| ||||
D、
|
A、2 | ||||
B、
| ||||
C、1 | ||||
D、
|
α |
β |
γ |
α |
β |
γ |
α |
β |
a |
p |
q |
a |
m |
n |
A、(2,0) |
B、(0,-2) |
C、(-2,0) |
D、(0,2) |
一、
二、
9.16 10.2009 11. 12.
13. 14.3 15.②③
三、
16.解:(1)由余弦定理得:
是以角C為直角的直角三角形.……………………6分
(2)中
………………①
………………②
②÷①得,
則……………………12分
17.解:(1)因?yàn)?sub>……………………………………(2分)
……………………………………………………(4分)
所以線路信息通暢的概率為!6分)
(2)的所有可能取值為4,5,6,7,8。
……………………………………………………………(9分)
∴的分布列為
4
5
6
7
8
P
…………………………………………………………………………………………(10分)
∴E=4×+5×+6×+7×+8×=6!12分)
18.解:解法一:(1)證明:連結(jié)OC,
∵ABD為等邊三角形,O為BD的中點(diǎn),∴AO
垂直BD!1分)
∴ AO=CO=!2分)
在AOC中,AC=,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BDOC=O,∴AO⊥平面BCD!3分)
(2)過(guò)O作OE垂直BC于E,連結(jié)AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。
∴AE⊥BC。
∠AEO為二面角A―BC―D的平面角。………………………………………(7分)
在RtAEO中,AO=,OE=,
∠,
∴∠AEO=arctan2。
二面角A―BC―D的大小為arctan2。
(3)設(shè)點(diǎn)O到面ACD的距離為∵VO-ACD=VA-OCD,
∴。
在ACD中,AD=CD=2,AC=,
。
|