題目列表(包括答案和解析)
已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是
A.x=- B.x-1 C.x=5 D.x=0
【解析】有向量垂直的充要條件得2(x-1)+2=0,所以x=0.D正確.
已知向量夾角為 ,且;則
【解析】因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912420929634592/SYS201207091242343432627474_ST.files/image005.png">,所以,即,所以,整理得,解得或(舍去).
如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點(diǎn),,.
(1)求證:平面;
(2)求二面角的大。
【解析】第一問(wèn)利用線(xiàn)面垂直的判定定理和建立空間直角坐標(biāo)系得到法向量來(lái)表示二面角的。
第二問(wèn)中,以A為原點(diǎn),如圖所示建立直角坐標(biāo)系
,,
設(shè)平面FAE法向量為,則
,,
如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:
(Ⅰ)異面直線(xiàn)與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問(wèn)中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線(xiàn)的公垂線(xiàn),則,故異面直線(xiàn)的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
已知正方體ABCD-A1B1C1D1,
O是底面ABCD對(duì)角線(xiàn)的交點(diǎn).
(1)求證:A1C⊥平面AB1D1;
(2)求.
【解析】(1)證明線(xiàn)面垂直,需要證明直線(xiàn)垂直這個(gè)平面內(nèi)的兩條相交直線(xiàn),本題只需證:即可.
(2)可以利用向量法,也可以根據(jù)平面A1ACC1與平面AB1D1垂直,可知取B1D1的中點(diǎn)E,則就是直線(xiàn)AC與平面AB1D1所成的角.然后解三角形即可.
1.D
2.C 提示:畫(huà)出滿(mǎn)足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿(mǎn)足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,N,因此,(),又A∩B=,故集合A、B的子集中沒(méi)有相同的集合,可知M、N中沒(méi)有其他的公共元素,故正確的答案是M∩N=.
5.A 提示:由得,當(dāng)時(shí),△,
得,當(dāng)時(shí),△,且,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.
10.A 11.B
12.D 提示:由,又因?yàn)?sub>是的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2) ;綜合(1)、(2)可得。
二、填空題
13.3 14. w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com