已知為坐標(biāo)原點(diǎn).點(diǎn).分別在軸.軸上運(yùn)動(dòng).且.動(dòng)點(diǎn)滿(mǎn)足.設(shè)點(diǎn)的軌跡為曲線(xiàn).定點(diǎn).直線(xiàn)交曲線(xiàn)于另外一點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)  已知為坐標(biāo)原點(diǎn),點(diǎn)分別在軸、軸上運(yùn)動(dòng),且,動(dòng)點(diǎn)滿(mǎn)足,設(shè)點(diǎn)的軌跡為曲線(xiàn),定點(diǎn),直線(xiàn)交曲線(xiàn)于另外一點(diǎn)

  (1)求曲線(xiàn)的方程;

  (2)求面積的最大值.

查看答案和解析>>

已知兩個(gè)定點(diǎn)A、B的坐標(biāo)分別為(-1,0)和(1,0),動(dòng)點(diǎn)P滿(mǎn)足
AP
OB
=
|PB|
(O為坐標(biāo)原點(diǎn)).
(I)求動(dòng)點(diǎn)P的軌跡E的方程;
(II)過(guò)點(diǎn)C(0,1)的直線(xiàn)l與軌跡E在x軸上方部分交于M、N兩點(diǎn),線(xiàn)段MN的垂直平分線(xiàn)與x軸交于D點(diǎn),求D點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=-lnx,x∈(0,e).曲線(xiàn)y=f(x)在點(diǎn)(t,f(t))處的切線(xiàn)與x軸和y軸分別交于A(yíng)、B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

已知橢圓C的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,F(xiàn)1、F2分別為其左、右焦點(diǎn),P在橢圓上任意一點(diǎn),且
F1P
F2P
的最大值為1,最小值為-2.
(1)求橢圓C的方程;
(2)設(shè)A為橢圓C的右頂點(diǎn),直線(xiàn)l是與橢圓交于M、N兩點(diǎn)的任意一條直線(xiàn),若AM⊥AN,證明直線(xiàn)l過(guò)定點(diǎn).

查看答案和解析>>

已知橢圓C1、拋物線(xiàn)C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線(xiàn)上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
則C1、C2的標(biāo)準(zhǔn)方程分別為
 
、
 

查看答案和解析>>

說(shuō)明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題

的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制訂相應(yīng)的評(píng)分細(xì)則.

    二、對(duì)計(jì)算題當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的

內(nèi)容和難度,可視影響的程度決定給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如

果后續(xù)部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得累加分.

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分?jǐn)?shù).

一、選擇題(每小題5分,滿(mǎn)分60分)

1.C   2.D   3.D   4.C   5.B   6.B   7.A   8.D   9.B   10.B  11.A  12.C

簡(jiǎn)答與提示:

1.,故選C.

2.∵

   ∴,故選D.

3.因?yàn)樗膫(gè)命題均有線(xiàn)在面內(nèi)的可能,所以均不正確,故選D.

4.,故選C.

5.利用疊加法及等比數(shù)列求和公式,可求得,故選B.

6.以為直徑的圓與圓的公共弦即為所求,直線(xiàn)方程為,故

選B.

7.,將的圖象先向左平移個(gè)單位得到

的圖象,再沿軸將橫坐標(biāo)壓縮到原來(lái)的倍(縱坐標(biāo)不變)得到的圖象,故選A.

8.在點(diǎn)(0,一1)處目標(biāo)函數(shù)取得最大值為9,故選D.

9.先在后三位中選兩個(gè)位置填兩個(gè)數(shù)字“0”種填法,再排另兩張卡片有種排

   法,再?zèng)Q定用數(shù)字“9”還是“6”有兩種可能,所以共可排成個(gè)四位數(shù),

   故選B.

10.依題意,∴,故選B.

11.因?yàn)楹瘮?shù)在其定義域內(nèi)為減函數(shù),所以

恒成立,即為減函數(shù)(切線(xiàn)斜率減小),故選A.

12.,

,∴,當(dāng)A、F、B

三點(diǎn)共線(xiàn)時(shí)取得最小值,故選C.

二、填空題(每題5分.共20分}

  13.3      14.      15.28      16.①③

  簡(jiǎn)答與提示:

  13.∵V正四面體 ,∴.

  14.∵,∴,∴

  15.∵,

    ∴,∴

  16.∵

      ∴,

      ∵,

      ∴,故①③正確.

三、解答題(滿(mǎn)分70分)

  17.本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)圖象及性質(zhì).

      解:(1)∵

                    (4分)

             ∴

          (2)當(dāng),即時(shí),,       ,    (6分)

             當(dāng),即,,

             ∴函數(shù)的值域?yàn)閇,1].                              (10分)

  18.本小題主要考查概率的基本知識(shí)與分類(lèi)思想,考查運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題解決問(wèn)題的

能力.

      解.(1)中一等獎(jiǎng)的概率為,                         (2分)

            中二等獎(jiǎng)的概率為,                          (4分)

中三等獎(jiǎng)的概率為,                       (6分)

∴搖獎(jiǎng)一次中獎(jiǎng)的概率為                    (7分)

(2) 由(1)可知,搖獎(jiǎng)一次不中獎(jiǎng)的概率為            (9分)

            設(shè)搖獎(jiǎng)一次莊家所獲得的金額為隨機(jī)變量,則隨機(jī)變量的分布列為:

            ∴

∴搖獎(jiǎng)一次莊家獲利金額的期望值為元                      (12分)

19.本小題主要考查空間線(xiàn)面位置關(guān)系、異面直線(xiàn)所成角、二面角等基本知識(shí),考查空間想象能力、邏輯思維能力和運(yùn)算能力以及空間向量的應(yīng)用.

解法一:(1)證明:

               取中點(diǎn)為,連結(jié)、,

               ∵△是等邊三角形,

               ∴

               又∵側(cè)面底面

               ∴底面,

               ∴在底面上的射影,

               又∵,

               ,

               ∴,

                ∴,

                ∴,

                ∴

(2)取中點(diǎn),連結(jié),                            (6分)

                ∵

                ∴

                又∵,

                ∴平面,

,

是二面角的平面角.                     (9分)

,,

∴二面角的大小為                           (12分)

解法二:證明:(1) 取中點(diǎn)為,中點(diǎn)為,連結(jié),

                ∵△是等邊三角形,

,

又∵側(cè)面底面,

底面,

∴以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

如圖,    (2分)

,△是等邊三角形,

,

(2)設(shè)平面的法向量為

   ∵

   ∴

,則,∴               (8分)

設(shè)平面的法向量為,              

,

,

,則,∴         (10分)

,

                ∴二面角的大小為.                          (12分)

20.本小題主要考查直線(xiàn)、橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查軌跡的求法以及綜合解題能力

解:(1)設(shè),則

    ∵,∴,∴,               (3分)

,∴

∴曲線(xiàn)的方程為                                     (6分)

(2)由(1)可知,

同步練習(xí)冊(cè)答案